Skip to main content

Mechanical Analysis of the Interface

  • Chapter
Interfaces in Total Hip Arthroplasty
  • 191 Accesses

Abstract

During cemented hip replacement the surgeon creates a composite structure that comprises a central prosthesis, an interposed cement mantle and a surrounding layer of bone. Two interfaces are formed; the cement-bone interface and the cement-prosthesis interface and the long-term success of the new joint depends on the integrity of the interfaces. In considering the mechanical analysis of the cement-bone interface the importance of cementing technique must be emphasised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Charnley J. Low friction arthroplasty of the hip. Theory and practice. Berlin Heidelberg: Springer-Verlag, 1979.

    Google Scholar 

  2. Mulroy RD Jr, Harris WH. The effect of improved cementing techniques on component loosening in total hip replacement, an 11-year radiographical follow-up. J Bone Joint Surg 1990;72B:757–760.

    Google Scholar 

  3. Timperley AJ, Ling RSM, Jones PR. The effect of surgical technique on the quality of hip arthroplasty. J Bone Joint Surg 1992;74B:Suppl II:139.

    Google Scholar 

  4. Ling RSM. Cementing technique in the femur. Tech Orthop 1991;6(3):34–39.

    Article  Google Scholar 

  5. Ranawat C, Beaver WB, Sharrock NE, Maynard MJ, Urquhart B, Schneider R. Effect of hypotensive epidural anaesthesia on acetabular cement-bone fixation in total hip arthroplasty. J Bone Joint Surg 1991;73B:779–782.

    Google Scholar 

  6. Halawa M, Lee AJC, Ling RSM, Vangala SS. The shear strength of trabecular bone from the femur, and some factors affecting the shear strength of the cement-bone interface. Arch Orthop Traumat Surg 1978;92:19–30.

    Article  CAS  Google Scholar 

  7. Geiger JM, Greenwald AS. Comparison of surface preparation techniques at the bone cement interface. Orthop Trans 1980;4:266.

    Google Scholar 

  8. Bannister GC, Miles AW. The influence of cementing technique and blood on the strength of the cement-bone interface. Eng Med 1988;17(3):131–133.

    Article  PubMed  CAS  Google Scholar 

  9. Majkowski RS, Miles AW, Bannister GC, Perkins J, Taylor GJS. Bone surface preparation in cemented joint replacement. J Bone Joint Surg 1993;75B:459–463.

    Google Scholar 

  10. Howells RJ, Salmon JM, McCullough KM. The effect of irrigating solutions on the strength of the cement-bone interface. Aust NZ J Surg 1992;62:215–218.

    Article  CAS  Google Scholar 

  11. Wroblewski BM, Van der Rijt A. Intramedullary cancellous bone block to improve femoral stem fixation in Charnley low-friction arthroplasty. J Bone Joint Surg 1984;66B: 639–643.

    Google Scholar 

  12. Oh I, Carlson CE, Tomford WW, Harris WH. Improved fixation of the femoral component after total hip replacement using a methacrylate intramedullary plug. J Bone Joint Surg 1978;60A:608–613.

    Google Scholar 

  13. Wroblewski BM. Fractured stem in total hip replacement: a clinical review of 120 cases. Acta Orthop. Scand. 1982;53:279–284.

    CAS  Google Scholar 

  14. Tronzo RG, Kallos T, Wyche MQ. Elevation of intramedullary pressure when methylmethacrylate is inserted in total hip arthroplasty. J Bone Joint Surg 1974;56A:714–718.

    Google Scholar 

  15. Breed AL. Experimental production of vascular hypotension, and bone marrow and fat embolism with methylmethacrylate cement: traumatic hypertension of bone. Clin Orthop 1974;102:227–244.

    Article  PubMed  Google Scholar 

  16. Herndon JH, Bechtol CO, Crickenberger DP. Fat embolism during total hip replacement: a prospective study. J Bone Joint Surg 1974;56A:1350–1362.

    Google Scholar 

  17. Kallos T, Ennis JE, Gollan F, Davis JH. Intramedullary pressure and pulmonary embolism of femoral medullary contents in dogs during insertion of bone cement and a prosthesis. J Bone Joint Surg 1974;56A:1363–1367.

    Google Scholar 

  18. Harris NH, Miller AJ, Bourne R, Wilson S, Kind P. Experimental investigation of fat embolism after use of acrylic cement in orthopaedic surgery. J Bone Joint Surg 1975;57B:245–246.

    Google Scholar 

  19. Beim GM, Lavernia CJ, Convery FR. A comparison of intramedullary plugs used in total hip arthroplasty. Transactions of the 35th Annual Meeting of the Orthopaedic Research Society, 1989:369.

    Google Scholar 

  20. Charnley J. Acrylic cement in Orthopaedic surgery. Edinburgh: E & S Livingstone, 1970.

    Google Scholar 

  21. Lee AJC, Ling RSM, Wrighton JD. Some properties of poly-methylmethacrylate with reference to its use in orthopaedic surgery. Clin Orthop 1973;95:281–287.

    PubMed  Google Scholar 

  22. Lee ACJ, Ling RSM, Vangala SS. Some clinically relevant variables affecting the behaviour of bone cement. Arch Orthop Traummat Surg 1978;92:1–18.

    Article  CAS  Google Scholar 

  23. Burke DW, Gates EI, Harris WH. Centrifugation as a method of improving tensile and fatigue properties of acrylic bone cement. J Bone Joint Surg 1984;66A:1265–1273.

    Google Scholar 

  24. Burke DW, Gates EI, Harris WH. Improvement of tensile and fatigue properties of PMMA by centrifugation. Trans ORS 1984:128.

    Google Scholar 

  25. Davies JP, O’Conner DO, Burke DW, Jasty M, Harris WM. The effect of centrifugation on the fatigue life of bone cement in the presence of surface irregularities. Clin Orthop 1988;229:156–161.

    PubMed  Google Scholar 

  26. Davies JP, Jasty M, O’Conner DO, Burke DW, Harrigan TP, Harris WH. The effect of centrifuging bone cement. J Bone Joint Surg 1989;71B: 39–42.

    Google Scholar 

  27. Lidgren L, Drar H, Moller J. Strength of polymethyl-methacrylate increased by vacuum mixing. Acta Orthop Scand 1984;55:536–541.

    Article  PubMed  CAS  Google Scholar 

  28. Wixson RL, Lautenschlager EP, Novak MA. Vacuum mixing of acrylic bone cement. J Arthroplasty 1987;2:141–149.

    Article  PubMed  CAS  Google Scholar 

  29. Linden U, Gillquist J. Air inclusion in bone cement: Importance of the mixing technique. Clin Orthop 1989;247:148–151.

    PubMed  Google Scholar 

  30. Rimnac CL, Wright TM, McGill DL. The effect of centrifugation on the fracture properties of acrylic bone cements. J Bone Joint Surg 1986;68A:281–287.

    Google Scholar 

  31. Connelly TJ, Lautenschlager EP, Wixon RL. The role of porosity in the shrinkage of acrylic cement. Trans 13th Annual Society Biomaterials, 1987:114.

    Google Scholar 

  32. Jay JL, Noble PO, Lindahl LJ, Tullos HS. Porosity and the polymerisation shrinkage of acrylic bone cement. Trans 13th Annual Society Biomaterials, 1987:113

    Google Scholar 

  33. Bishop NE, Ferguson S, Tepic S. Porosity reduction in bone cement at the cement-stem interface. J Bone Joint Surg 1996;78B:349–356.

    Google Scholar 

  34. Miller J, Krause WR, Krug WH, Kelebay LC. Low viscosity cement. Orthop Trans 1981;5:352.

    Google Scholar 

  35. Markolf KL, Amstutz HC. Penetration and flow of acrylic bone cement. Clin Orthop 1976;121:99–102.

    PubMed  Google Scholar 

  36. Markolf KL, Amstutz HC. In vitro measurement of bone-acrylic interface pressure during femoral component insertion. Clin Orthop 1976;121:60–66.

    PubMed  Google Scholar 

  37. Gruen TA, Markolf KL, Amstutz HC. Effects of laminations and blood entrapment on the strength of acrylic bone cement. Clin Orthop 1976;119:250–255.

    PubMed  Google Scholar 

  38. Weber BG. Pressurized cement fixation in total hip arthroplasty. Clin Orthop 1988;232:87–95.

    PubMed  Google Scholar 

  39. Oh I, Harris WH (1982) A cement fixation system for total hip arthroplasty. Clin Orthop 164:221–229.

    PubMed  Google Scholar 

  40. Lee AJC, Ling RSM. The Exeter system. Seminar and workshop handbook, 1983.

    Google Scholar 

  41. Lee ACJ, Ling RSM, Vangala SS. The mechanical strength of bone cements. J Med Eng Technol 1977;2:137–140.

    Article  Google Scholar 

  42. Heys-Moore GH, Ling RSM. Current cementing techniques. In: Marti R (ed) Progress in cemented total hip surgery and revision: proceedings of a symposium held in Amsterdam. Amsterdam, Geneva, Hong Kong, Princeton, Tokyo: Excerpta Medica, 1982; 71.

    Google Scholar 

  43. Lee AJC,. Ling RSM. Loosening. In Ling RSM (ed) Complications of total hip replacement. Edinburgh: Churchill-Livingstone, 1984;110–145.

    Google Scholar 

  44. Benjamin JB, Gie GA, Lee AJC, Ling RSM, Volz RG. Cementing techniques and the effect of bleeding. J Bone Joint Surg 1987;69B:620–624.

    Google Scholar 

  45. Majkowski RS, Bannister GC, Miles AW. The effect of bleeding on the cement-bone interface. Clin Orthop 1994;299:293–297.

    PubMed  Google Scholar 

  46. Oh I, Bourne RB, Harris WH. The femoral cement compactor. J Bone Joint Surg 1983;65A:1335–1338.

    Google Scholar 

  47. Baeudoin AJ, Mihalko WM, Krause WR. Finite element modeling of polymethylmethacrylate flow through cancel-lous bone. J Biomechanics 1991;24(2):127–136.

    Article  Google Scholar 

  48. Convery FR, Malcolm LL. Prosthetic fixation with controlled pressurized polymerisation of polymethylmethacrylate. Trans Orthop Res Soc 1980;4(2):205.

    Google Scholar 

  49. Krause WR, Krug W, Miller J. Strength of the cement-bone interface. Clin Orthop 1982;163:290–299.

    PubMed  Google Scholar 

  50. Krause W, Bondy R, Miller JE. Sustained pressurization of acrylic cement in the proximal femur during arthroplasty. Trans Orthop Res Soc:1981;36.

    Google Scholar 

  51. Panjabi MM, Goel VK, Drinker H, Wong J, Kamire G, Walter SD. Effect of pressurization on methylmethacrylate-bone interdigitation: an in vitro study of canine femora. J Biomechanics 1983;16(7):473–480.

    Article  CAS  Google Scholar 

  52. Panjabi M, Cimino W, Goel V, Drinker H. Enhancement of cement-bone composite by pressurization. Trans 30th ORS 1984;129.

    Google Scholar 

  53. Askew MJ, Steege JW, Lewis JL, Ranieri JR, Wixson RL. Effect of cement pressure and bone strength on polymethylmethacrylate fixation. J Orthop Res 1984;1:412–420.

    Article  PubMed  CAS  Google Scholar 

  54. Bourne RB, Oh I, Harris WH. Femoral cement pressurization during total hip replacement. The role of different femoral stems with reference to stem size and shape. Clin Orthop 1984;183:12–16.

    PubMed  Google Scholar 

  55. Bean DJ, Hollis JM, Woo SLY, Convery FR. Sustained pressurization of polymethylmethacrylate: A comparison of low-and moderate-viscosity bone cements. J Orthop Res 1988;6:580–584.

    Article  PubMed  CAS  Google Scholar 

  56. Macdonald W, Swarts E, Beaver R. Penetration and shear strength of cement-bone interfaces in vivo. Clin Orthop 1993;286:283–288.

    PubMed  Google Scholar 

  57. Song Y, Goodman S, Jaffe R. An in-vitro study of femoral intramedullary pressures during hip replacement using modern cement techniques. Clin Orthop 1994;302:297–304.

    PubMed  Google Scholar 

  58. Mann KA, Ayers DC, Werner FW, Nicoletta RJ, Fortino MD. Tensile strength of the cement-bone interface depends on the amount of bone interdigitated with PMMA cement. J Biomechanics 1997;30(4):339–346.

    Article  CAS  Google Scholar 

  59. Havelin LI, Espehaug B, Vollset SE, Engesaeter LB. The effect of the type of cement on early revision of Charnley total hip prosthesis. J Bone Joint Surg 1995;77A:1543–1550.

    Google Scholar 

  60. Massoud SN, Hunter JB, Holdsworth BJ, Wallace WA, Juliusson R. Early femoral loosening in one design of cemented total hip replacement. J Bone Joint Surg 1997;79B:603–608.

    Article  Google Scholar 

  61. Murray DW, Carr AJ, Bulstrode CJ. Which primary total hip replacement? J Bone Joint Surg 1995;77B:520–527.

    Google Scholar 

  62. Malchau H. On the importance of stepwise introduction of new hip implant technology, Thesis, Goteborg, 1995.

    Google Scholar 

  63. Tillman RM. An improved femoral vent in cemented total hip arthroplasty. J Bone Joint Surg 1992;74B:Suppl 11:140.

    Google Scholar 

  64. McCaskie AW, Gregg PJ. Femoral cementing technique; trends and future developments. J Bone Joint Surg 1994;76B:176–177.

    Google Scholar 

  65. Hashemi-Nejad A, Birch NC, Goddard NJ. Current attitudes to cementing techniques in British hip surgery. Ann R Col: Surg Engl 1994;76:396–400.

    CAS  Google Scholar 

  66. Harris WH, McCarthy JC, O’Neill DA. Femoral component loosening using contemporary techniques of femoral cement fixation. J Bone Joint Surg 1982;64A:1063–1067.

    Google Scholar 

  67. Roberts DW, Poss R, Kelley K. Radiographic comparison of cementing techniques in total hip replacement. J Arthroplasty 1986;1:241–247.

    Article  PubMed  CAS  Google Scholar 

  68. Joshi AB, Porter ML, Trail IA, Hunt LP, Murphy JC Hardinge K. Long-term results of Charnley low-frictior arthroplasty in young patients. J Bone Joint Surg 1993;75B:616–623.

    Google Scholar 

  69. Schulte KR, Callaghan JJ, Kelley SS, Johnston RC. The outcome of Charnley total hip arthroplasty with cement after a minimum twenty-year follow-up. The results of one surgeon. J Bone Joint Surg 1993;75A:961–975.

    Google Scholar 

  70. Malchau H, Herberts P. Prognosis of total hip replacement Surgical and cementing technique in THR: a revision-risk study of 134 056 primary operations. Scientific Exhibition 63rd AAOS, 1996.

    Google Scholar 

  71. McCaskie AW, Barnes MR, Lin E, Harper WM, Gregg PJ Cement pressurisation during hip replacement. J Bone Joint Surg 1997;79B:79–84.

    Google Scholar 

  72. McCaskie AW, Roberts M, Gregg PJ. Human tissue retrieval at post-mortem for musculoskeletal research. Br J Biomed Sci 1995;52:222–224.

    PubMed  CAS  Google Scholar 

  73. Gardiner RC, Hozack WJ. Failure of the cement-bone interface. A consequence of strengthening the cement-prosthesis interface? J Bone Joint Surg 1994;76B:49–52.

    Google Scholar 

  74. Taylor M, Tanner KE. Fatigue failure of cancellous bone: a possible cause of implant migration and loosening. J Bone Joint Surg 1997;79B:181–182.

    Article  Google Scholar 

  75. Ward AJ, Smith EJ, Barlow JW, Powell A, Halawa M, Learmonth ID. The in vitro measurement of cement-bone interface pressures and shear strengths in the femur: a comparison of two cementation methods. Hip Int 1995;5:124–130.

    Google Scholar 

  76. McCaskie AW. Cemented femoral fixation. MD Thesis, University of Leicester, 1996; 236-247.

    Google Scholar 

  77. McCaskie AW, Brown A, Barnes M, Morrison M, Harper WM, Gregg PJ. Characterisation of a cement mantle defect leading to accelerated prosthetic subsidence. J Bone Joint Surg 1997;79B Supp III:352–353.

    Google Scholar 

  78. Reading AD, McCaskie AW, Barnes M, Roberts M, Gregg PJ. Comparison of two modern femoral cementing techniques: in vitro study using cement-bone interface pressure and computerised image analysis. J Bone Joint Surg 1997;79B Suppl IV:468–469.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this chapter

Cite this chapter

McCaskie, A. (2000). Mechanical Analysis of the Interface. In: Learmonth, I.D. (eds) Interfaces in Total Hip Arthroplasty. Springer, London. https://doi.org/10.1007/978-1-4471-0477-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0477-3_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1150-4

  • Online ISBN: 978-1-4471-0477-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics