Skip to main content

Motion Control

  • Chapter
  • 2730 Accesses

Part of the book series: Advanced Textbooks in Control and Signal Processing ((C&SP))

Abstract

In the previous chapter, trajectory planning techniques have been presented which allow generating the reference inputs to the motion control system. The problem of controlling a manipulator can be formulated as that to determine the time history of the generalized forces (forces or torques) to be developed by the joint actuators so as to guarantee execution of the commanded task while satisfying given transient and steady-state requirements. The task may regard either the execution of specified motions for a manipulator operating in free space, or the execution of specified motions and contact forces for a manipulator whose end effector is constrained by the environment. In view of problem complexity, the two aspects will be treated separately; first, motion control in free space, and then interaction control in constrained space. The problem of motion control of a manipulator is the topic of this chapter. A number of joint space control techniques are presented. These can be distinguished between decentralized control schemes, i.e., when the single manipulator joint is controlled independently of the others, and centralized control schemes, i.e., when the dynamic interaction effects between the joints are taken into account. Finally, as a premise to the interaction control problem, the basic features of operational space control schemes are illustrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Abdallah C., Dawson D., Dorato P., Jamshidi M. (1991) Survey of robust control for rigid robots. IEEE Control Systems Mag. 11(2):24–30.

    Article  Google Scholar 

  • An C.H., Atkeson C.G., Hollerbach J.M. (1988) Model-Based Control of a Robot Manipulator. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Arimoto S., Miyazaki F. (1984) Stability and robustness of PID feedback control for robot manipulators of sensory capability. In Robotics Research: The First International Symp. M. Brady, R. Paul (Eds.), MIT Press, Cambridge, Mass., pp. 783–799.

    Google Scholar 

  • Asada H., Slotine J.-J.E. (1986) Robot Analysis and Control. Wiley, New York.

    Google Scholar 

  • Balestrino A., De Maria G., Sciavicco L. (1983) An adaptive model following control for robotic manipulators. ASME J. Dynamic Systems, Measurement, and Control. 105:143–151.

    Article  MATH  Google Scholar 

  • Balestrino A., De Maria G., Sciavicco L. (1983) Adaptive control of manipulators in the task oriented space. In Proc. 13th Int. Symp. Industrial Robots & Robots 7 Chicago, Ill., 13, pp. 13–28

    Google Scholar 

  • Bejczy A.K. (1974) Robot Arm Dynamics and Control. Memo. TM 33-669, Jet Propulsion Laboratory, California Institute of Technology.

    Google Scholar 

  • Caccavale F., Natale C., Siciliano B., Villani, L. (1998) Resolved-acceleration control of robot manipulators: A critical review with experiments. Robotica. 16:565–573.

    Article  Google Scholar 

  • Chiacchio P., Pierrot F., Sciavicco L., Siciliano B. (1993) Robust design of independent joint controllers with experimentation on a high-speed parallel robot. IEEE Trans. Industrial Electronics. 40:393–403.

    Article  Google Scholar 

  • Chiacchio P., Sciavicco L., Siciliano B. (1990) The potential of model-based control algorithms for improving industrial robot tracking performance. In Proc. IEEE Int. Work. Intelligent Motion Control. Istanbul, Turkey, pp. 831–836.

    Google Scholar 

  • Corless M. (1989) Tracking controllers for uncertain systems: Application to a Manutec r3 robot. ASME J. Dynamic Systems, Measurement, and Control. 111:609–618.

    Article  MATH  Google Scholar 

  • Craig J.J. (1988) Adaptive Control of Mechanical Manipulators. Addison-Wesley, Reading, Mass.

    Google Scholar 

  • Craig J.J. (1989) Introduction to Robotics: Mechanics and Control. 2nd ed., Addison-Wesley, Reading, Mass.

    MATH  Google Scholar 

  • Dubowsky S., DesForges D.T. (1979) The application of model referenced adaptive control to robotic manipulators. ASME J. Dynamic Systems, Measurement, and Control. 101:193–200.

    Article  MATH  Google Scholar 

  • Freund E. (1982) Fast nonlinear control with arbitrary pole-placement for industrial robots and manipulators. Int. J. Robotics Research. l(1):65–78

    Google Scholar 

  • Horowitz R., Tomizuka M. (1986) An adaptive control scheme for mechanical manipulators—Compensation of nonlinearity and decoupling control. ASME J. Dynamic Systems, Measurement, and Control. 108:127–135.

    Article  MATH  Google Scholar 

  • Hsia T.C.S., Lasky T.A., Guo Z. (1991) Robust independent joint controller design for industrial robot manipulators. IEEE Trans. Industrial Electronics. 38:21–25.

    Article  Google Scholar 

  • Khatib O. (1987) A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE J. Robotics and Automation. 3:43–53.

    Article  Google Scholar 

  • Khosla P.K., Kanade T. (1988) Experimental evaluation of nonlinear feedback and feedforward control schemes for manipulators. Int. J. Robotics Research. 7(1): 18–28.

    Article  Google Scholar 

  • Koivo A.J. (1989) Fundamentals for Control of Robotic Manipulators. Wiley, New York.

    Google Scholar 

  • Kreutz K. (1989) On manipulator control by exact linearization. IEEE Trans. Automatic Control. 34:763–767.

    Article  MathSciNet  MATH  Google Scholar 

  • Leahy M.B., Saridis G.N. (1989) Compensation of industrial manipulator dynamics. Int. J. Robotics Research. 8(4):73–84.

    Article  Google Scholar 

  • Luh J.Y.S. (1983) Conventional controller design for industrial robots: A tutorial. IEEE Trans. Systems, Man, and Cybernetics. 13:298–316.

    Article  MATH  Google Scholar 

  • Luh J.Y.S., Walker M.W., Paul R.P.C. (1980) Resolved-acceleration control of mechanical manipulators. IEEE Trans. Automatic Control. 25:468–474.

    Article  MATH  Google Scholar 

  • Nicolò R., Katende J. (1983) A robust MRAC for industrial robots. In Proc. 2nd IASTED Int. Symp. Robotics and Automation. Lugano, Switzerland, pp. 162–171.

    Google Scholar 

  • Nicosia S., Tomei P. (1984) Model reference adaptive control algorithms for industrial robots. Automatica. 20:635–644.

    Article  MATH  Google Scholar 

  • Ortega R., Spong M.W. (1989) Adaptive motion control of rigid robots: a tutorial. Automatica. 25:877–888.

    Article  MathSciNet  MATH  Google Scholar 

  • Paul R.P. (1981) Robot Manipulators: Mathematics, Programming, and Control. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Slotine J.-J.E. (1987) Robust control of robot manipulators. Int. J. Robotics Research. 4(2):49–64.

    Article  Google Scholar 

  • Slotine J.-J.E., Li W. (1987) On the adaptive control of robot manipulators. Int. J. Robotics Research. 6(3):49–59.

    Article  Google Scholar 

  • Slotine J.-J.E., Li W. (1988) Adaptive manipulator control: A case study. IEEE Trans. Automatic Control. 33:995–1003.

    Article  MATH  Google Scholar 

  • Slotine J.-J.E., Sastry S.S. (1983) Tracking control of nonlinear systems using sliding surfaces with application to robot manipulators. Int. J. Control. 38:465–492.

    Article  MathSciNet  MATH  Google Scholar 

  • Spong M.W. (1992) On the robust control of robot manipulators. IEEE Trans. Automatic Control. 37:1782–1786.

    Article  MathSciNet  MATH  Google Scholar 

  • Spong M.W., Ortega R., Kelly R. (1990) Comments on “Adaptive manipulator control: A case study”. IEEE Trans. Automatic Control. 35:761–762.

    Article  MATH  Google Scholar 

  • Spong M.W., Vidyasagar M. (1987) Robust linear compensator design for nonlinear robotic control. IEEE J. Robotics and Automation. 3:345–351.

    Article  Google Scholar 

  • Spong M.W., Vidyasagar M. (1989) Robot Dynamics and Control. Wiley, New York.

    Google Scholar 

  • Takegaki M., Arimoto S. (1981) A new feedback method for dynamic control of manipulators. ASME J. Dynamic Systems, Measurement, and Control. 102:119–125.

    Article  Google Scholar 

  • Tarn T.-J., Bejczy A.K., Yun X., Li Z. (1991) Effect of motor dynamics on nonlinear feedback robot arm control. IEEE Trans. Robotics and Automation. 7:114–122.

    Article  Google Scholar 

  • Vukobratović M., Stokić D. (1982) Control of Manipulation Robots: Theory and Application. Scientific Fundamentals of Robotics 2, Springer-Verlag, Berlin.

    Google Scholar 

  • Vukobratović M., Stokić D. (1989) Applied Control of Manipulation Robots. Springer-Verlag, Berlin.

    Google Scholar 

  • Vukobratović M., Stokić D., Kirćanski N. (1985) Non-Adaptive and Adaptive Control of Manipulation Robots. Scientific Fundamentals of Robotics 5, Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this chapter

Cite this chapter

Sciavicco, L., Siciliano, B. (2000). Motion Control. In: Modelling and Control of Robot Manipulators. Advanced Textbooks in Control and Signal Processing. Springer, London. https://doi.org/10.1007/978-1-4471-0449-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0449-0_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-221-1

  • Online ISBN: 978-1-4471-0449-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics