Motion Control

  • Lorenzo Sciavicco
  • Bruno Siciliano
Part of the Advanced Textbooks in Control and Signal Processing book series


In the previous chapter, trajectory planning techniques have been presented which allow generating the reference inputs to the motion control system. The problem of controlling a manipulator can be formulated as that to determine the time history of the generalized forces (forces or torques) to be developed by the joint actuators so as to guarantee execution of the commanded task while satisfying given transient and steady-state requirements. The task may regard either the execution of specified motions for a manipulator operating in free space, or the execution of specified motions and contact forces for a manipulator whose end effector is constrained by the environment. In view of problem complexity, the two aspects will be treated separately; first, motion control in free space, and then interaction control in constrained space. The problem of motion control of a manipulator is the topic of this chapter. A number of joint space control techniques are presented. These can be distinguished between decentralized control schemes, i.e., when the single manipulator joint is controlled independently of the others, and centralized control schemes, i.e., when the dynamic interaction effects between the joints are taken into account. Finally, as a premise to the interaction control problem, the basic features of operational space control schemes are illustrated.


Tracking Error Robot Manipulator Inverse Dynamic Forward Path Block Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdallah C., Dawson D., Dorato P., Jamshidi M. (1991) Survey of robust control for rigid robots. IEEE Control Systems Mag. 11(2):24–30.CrossRefGoogle Scholar
  2. An C.H., Atkeson C.G., Hollerbach J.M. (1988) Model-Based Control of a Robot Manipulator. MIT Press, Cambridge, Mass.Google Scholar
  3. Arimoto S., Miyazaki F. (1984) Stability and robustness of PID feedback control for robot manipulators of sensory capability. In Robotics Research: The First International Symp. M. Brady, R. Paul (Eds.), MIT Press, Cambridge, Mass., pp. 783–799.Google Scholar
  4. Asada H., Slotine J.-J.E. (1986) Robot Analysis and Control. Wiley, New York.Google Scholar
  5. Balestrino A., De Maria G., Sciavicco L. (1983) An adaptive model following control for robotic manipulators. ASME J. Dynamic Systems, Measurement, and Control. 105:143–151.zbMATHCrossRefGoogle Scholar
  6. Balestrino A., De Maria G., Sciavicco L. (1983) Adaptive control of manipulators in the task oriented space. In Proc. 13th Int. Symp. Industrial Robots & Robots 7 Chicago, Ill., 13, pp. 13–28Google Scholar
  7. Bejczy A.K. (1974) Robot Arm Dynamics and Control. Memo. TM 33-669, Jet Propulsion Laboratory, California Institute of Technology.Google Scholar
  8. Caccavale F., Natale C., Siciliano B., Villani, L. (1998) Resolved-acceleration control of robot manipulators: A critical review with experiments. Robotica. 16:565–573.CrossRefGoogle Scholar
  9. Chiacchio P., Pierrot F., Sciavicco L., Siciliano B. (1993) Robust design of independent joint controllers with experimentation on a high-speed parallel robot. IEEE Trans. Industrial Electronics. 40:393–403.CrossRefGoogle Scholar
  10. Chiacchio P., Sciavicco L., Siciliano B. (1990) The potential of model-based control algorithms for improving industrial robot tracking performance. In Proc. IEEE Int. Work. Intelligent Motion Control. Istanbul, Turkey, pp. 831–836.Google Scholar
  11. Corless M. (1989) Tracking controllers for uncertain systems: Application to a Manutec r3 robot. ASME J. Dynamic Systems, Measurement, and Control. 111:609–618.zbMATHCrossRefGoogle Scholar
  12. Craig J.J. (1988) Adaptive Control of Mechanical Manipulators. Addison-Wesley, Reading, Mass.Google Scholar
  13. Craig J.J. (1989) Introduction to Robotics: Mechanics and Control. 2nd ed., Addison-Wesley, Reading, Mass.zbMATHGoogle Scholar
  14. Dubowsky S., DesForges D.T. (1979) The application of model referenced adaptive control to robotic manipulators. ASME J. Dynamic Systems, Measurement, and Control. 101:193–200.zbMATHCrossRefGoogle Scholar
  15. Freund E. (1982) Fast nonlinear control with arbitrary pole-placement for industrial robots and manipulators. Int. J. Robotics Research. l(1):65–78Google Scholar
  16. Horowitz R., Tomizuka M. (1986) An adaptive control scheme for mechanical manipulators—Compensation of nonlinearity and decoupling control. ASME J. Dynamic Systems, Measurement, and Control. 108:127–135.zbMATHCrossRefGoogle Scholar
  17. Hsia T.C.S., Lasky T.A., Guo Z. (1991) Robust independent joint controller design for industrial robot manipulators. IEEE Trans. Industrial Electronics. 38:21–25.CrossRefGoogle Scholar
  18. Khatib O. (1987) A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE J. Robotics and Automation. 3:43–53.CrossRefGoogle Scholar
  19. Khosla P.K., Kanade T. (1988) Experimental evaluation of nonlinear feedback and feedforward control schemes for manipulators. Int. J. Robotics Research. 7(1): 18–28.CrossRefGoogle Scholar
  20. Koivo A.J. (1989) Fundamentals for Control of Robotic Manipulators. Wiley, New York.Google Scholar
  21. Kreutz K. (1989) On manipulator control by exact linearization. IEEE Trans. Automatic Control. 34:763–767.MathSciNetzbMATHCrossRefGoogle Scholar
  22. Leahy M.B., Saridis G.N. (1989) Compensation of industrial manipulator dynamics. Int. J. Robotics Research. 8(4):73–84.CrossRefGoogle Scholar
  23. Luh J.Y.S. (1983) Conventional controller design for industrial robots: A tutorial. IEEE Trans. Systems, Man, and Cybernetics. 13:298–316.zbMATHCrossRefGoogle Scholar
  24. Luh J.Y.S., Walker M.W., Paul R.P.C. (1980) Resolved-acceleration control of mechanical manipulators. IEEE Trans. Automatic Control. 25:468–474.zbMATHCrossRefGoogle Scholar
  25. Nicolò R., Katende J. (1983) A robust MRAC for industrial robots. In Proc. 2nd IASTED Int. Symp. Robotics and Automation. Lugano, Switzerland, pp. 162–171.Google Scholar
  26. Nicosia S., Tomei P. (1984) Model reference adaptive control algorithms for industrial robots. Automatica. 20:635–644.zbMATHCrossRefGoogle Scholar
  27. Ortega R., Spong M.W. (1989) Adaptive motion control of rigid robots: a tutorial. Automatica. 25:877–888.MathSciNetzbMATHCrossRefGoogle Scholar
  28. Paul R.P. (1981) Robot Manipulators: Mathematics, Programming, and Control. MIT Press, Cambridge, Mass.Google Scholar
  29. Slotine J.-J.E. (1987) Robust control of robot manipulators. Int. J. Robotics Research. 4(2):49–64.CrossRefGoogle Scholar
  30. Slotine J.-J.E., Li W. (1987) On the adaptive control of robot manipulators. Int. J. Robotics Research. 6(3):49–59.CrossRefGoogle Scholar
  31. Slotine J.-J.E., Li W. (1988) Adaptive manipulator control: A case study. IEEE Trans. Automatic Control. 33:995–1003.zbMATHCrossRefGoogle Scholar
  32. Slotine J.-J.E., Sastry S.S. (1983) Tracking control of nonlinear systems using sliding surfaces with application to robot manipulators. Int. J. Control. 38:465–492.MathSciNetzbMATHCrossRefGoogle Scholar
  33. Spong M.W. (1992) On the robust control of robot manipulators. IEEE Trans. Automatic Control. 37:1782–1786.MathSciNetzbMATHCrossRefGoogle Scholar
  34. Spong M.W., Ortega R., Kelly R. (1990) Comments on “Adaptive manipulator control: A case study”. IEEE Trans. Automatic Control. 35:761–762.zbMATHCrossRefGoogle Scholar
  35. Spong M.W., Vidyasagar M. (1987) Robust linear compensator design for nonlinear robotic control. IEEE J. Robotics and Automation. 3:345–351.CrossRefGoogle Scholar
  36. Spong M.W., Vidyasagar M. (1989) Robot Dynamics and Control. Wiley, New York.Google Scholar
  37. Takegaki M., Arimoto S. (1981) A new feedback method for dynamic control of manipulators. ASME J. Dynamic Systems, Measurement, and Control. 102:119–125.CrossRefGoogle Scholar
  38. Tarn T.-J., Bejczy A.K., Yun X., Li Z. (1991) Effect of motor dynamics on nonlinear feedback robot arm control. IEEE Trans. Robotics and Automation. 7:114–122.CrossRefGoogle Scholar
  39. Vukobratović M., Stokić D. (1982) Control of Manipulation Robots: Theory and Application. Scientific Fundamentals of Robotics 2, Springer-Verlag, Berlin.Google Scholar
  40. Vukobratović M., Stokić D. (1989) Applied Control of Manipulation Robots. Springer-Verlag, Berlin.Google Scholar
  41. Vukobratović M., Stokić D., Kirćanski N. (1985) Non-Adaptive and Adaptive Control of Manipulation Robots. Scientific Fundamentals of Robotics 5, Springer-Verlag, Berlin.Google Scholar

Copyright information

© Springer-Verlag London 2000

Authors and Affiliations

  • Lorenzo Sciavicco
    • 1
  • Bruno Siciliano
    • 2
  1. 1.Dipartimento di Informatica e AutomazioneUniversità degli Studi di Roma TreRomeItaly
  2. 2.Dipartimento di Informatica e SistemisticaUniversità degli Studi di Napoli Federico IINaplesItaly

Personalised recommendations