Thermoacoustic Sources and Instabilities

  • D. G. Crighton
  • A. P. Dowling
  • J. E. Ffowcs Williams
  • M. Heckl
  • F. G. Leppington


Thermoacoustics deals with the acoustics of flows in which the variation of entropy plays a significant role. A range of processes are thermoacoustic sources. For example, unsteady combustion, diffusion of heat and mass and turbulent two-phase flows all generate sound. Chapters 11 and 12 demonstrate how the Lighthill theory provides a convenient description of sound generation. There we saw in Equation (11.46), for example, that the Navier-Stokes equation and the equation of mass conservation may be combined to give an inhomogeneous wave equation for the density fluctuations. When investigating thermoacoustic source processes it is convenient to use the pressure perturbation as the dependent variable.


Sound Speed Sound Generation Sound Field Premix Flame Acoustic Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bloxsidge, G.J., Dowling, A.P., Hooper, N. & Langhorne, P.J. (1988). Active control of reheat buzz. AIAA J. 26:783–790.CrossRefGoogle Scholar
  2. Bragg, S.L. (1963). Combustion noise. J. Inst. of Fuel 36, 12–16.Google Scholar
  3. Candel, S.M. & Poinsot, T.J. (1988). Interactions between acoustics and combustion. Proc. Inst. Acoustics 10:103–153.Google Scholar
  4. Chiu, H.H. & Summerfield, M. (1974). Theory of combustion noise. Acta Astro. 1:967–984.CrossRefGoogle Scholar
  5. Chu, B.T. (1964). On the energy transfer to small disturbances in fluid flow. Part I. Acta Mechanics 1:215–234.Google Scholar
  6. Crighton, D.G. & Ffowcs Williams, J.E. (1969). Sound generation by turbulent two-phase flow. J. Fluid Mech. 36:585–603.MATHCrossRefGoogle Scholar
  7. Culick, F.E.C. (1988). Combustion in liquid-fuelled propulsion systems — an overview. AGARD-CPP-450.Google Scholar
  8. Cumpsty, N.A. & Marble, F.E. (1977). The interaction of entropy fluctuations with turbine blade rows; a mechanism of turbo-jet engine noise. Proc. Roy. Soc. A. 357:323–344.CrossRefGoogle Scholar
  9. Dines, P.J. (1983). Active Control of Flame Noise. PhD Thesis, Cambridge University.Google Scholar
  10. Ffowcs Williams, J.E. (1982). Sound sources in aerodynamics — fact and fiction. AIAA J. 20:307–315.MATHCrossRefGoogle Scholar
  11. Ffowcs Williams, J.E. & Howe, M.S. (1975). The generation of sound by density inhomogeneities in low Mach number nozzle flows. J. Fluid Mech. 70:605–622.MATHCrossRefGoogle Scholar
  12. Giammar, R.D. & Putnam, A.A. (1972). Combustion roar of premix burners, singly and in pairs. Combustion and Flame 18:435–438.CrossRefGoogle Scholar
  13. Hassan, H.A. (1974). Scaling of combustion generated noise. J. Fluid Mech. 66:445–453.MATHCrossRefGoogle Scholar
  14. Heckl, M.A. (1988). Active control of the noise from a Rijke tube. J. Sound Vib. 124:117–133.CrossRefGoogle Scholar
  15. Hurle, I.R., Price, R.B., Sugden, T.M., & Thomas, A. (1968). Sound emission from open turbulent premixed flames. Proc. Roy Soc. Lond. A 303:409–427.CrossRefGoogle Scholar
  16. Kempton, A.J. (1976). Heat diffusion as a source of aerodynamic sound. J. Fluid Mech. 78:1–31.MATHCrossRefGoogle Scholar
  17. Lang, W., Poinsot, T. & Candel, S.M. (1987). Active control of combustion instability. Combustion and Flame 70:281–289.CrossRefGoogle Scholar
  18. Langhorne, P.J., Dowling, A.P. & Hooper, N. (1990). A practical active control system for combustion instabilities. AIAA J. Prop, and Power 6:324–333.CrossRefGoogle Scholar
  19. Morfey, C.L. (1976). Sound radiation due to unsteady dissipation in turbulent flows. J. Sound Vib. 48:95–111.MATHCrossRefGoogle Scholar
  20. Obermeier, F. (1985). Aerodynamic sound generation caused by viscous processes. J. Sound Vib. 99:111–120.MATHCrossRefGoogle Scholar
  21. Poinsot, T., Bourienne, F., Esposito, E., Candel, S. & Lang, W. (1987). Suppression of combustion instabilities by active control. AIAA-87-1876.Google Scholar
  22. Putnam, A.A. (1971). Combustion—driven Oscillations in Industry. Elsevier (USA).Google Scholar
  23. Putnam, A.A. & Faulkner, L. (1983). An overview of combustion noise. J. Energy 7:458–469.CrossRefGoogle Scholar
  24. Rayleigh, J.W.S. (1945). The Theory of Sound. Vol.11. Dover Publications.Google Scholar
  25. Shivashankara, B.N., Strahle, W.C. & Handley, J.C. (1975). Evaluation of combustion noise scaling laws by an optical technique. AIAA J. 13:623–627.CrossRefGoogle Scholar
  26. Strahle, W.C. (1972). Some results in combustion generated noise. J. Sound Vib. 23:113–125.CrossRefGoogle Scholar
  27. Strahle, W.C. (1978). Combustion noise. Prog. Energy and Combust. Sci. 4:157–176.CrossRefGoogle Scholar
  28. Williams, F.A. (1965). Combustion Theory. Addison-Wesley.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • D. G. Crighton
    • 1
  • A. P. Dowling
    • 2
  • J. E. Ffowcs Williams
    • 2
  • M. Heckl
    • 3
  • F. G. Leppington
    • 4
  1. 1.University of CambridgeUK
  2. 2.Department of EngineeringUniversity of CambridgeUK
  3. 3.Technische Universität BerlinGermany
  4. 4.The Imperial College of Science and TechnologyLondonUK

Personalised recommendations