Skip to main content

Realistic low-latency mobile AR rendering

  • Conference paper
Virtual and Augmented Architecture (VAA’01)

Abstract

When designing a system for mobile augmented reality, problems to be tackled concern tracking, rendering performance, end-to-end latency, battery usage, and communication bandwidth of the mobile platform. We developed an integral solution covering all these aspects, while still being manageable from the application’s point of view. In this paper we outline the global layout of our system, and discuss a demo application projecting a statue on the campus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feiner S, Maclntyre B, Höllerer T, Webster A. A touring machine: Prototyping 3D mobile augmented reality systems for exploring the urban environment. Proc. ISWC’97 (International Symposium on wearable computing (Cambridge, MA, October 13–14), 1997, 74–81. www.cs.columbia.edu/graphics/publications/ISWC97.ps.gz.

    Google Scholar 

  2. Thomas B, Piekarski W, Gunther B. Using augmented reality to visualise architecture designs in an outdoor environment. Proc. DCNet’99 (Design computing on the Net, nov 30 - dec 3, University of Sydney, Australia), 1999.http://www.arch.usyd.EDU.AU/kcdc/journal/vol2/dcnet/sub8/.

    Google Scholar 

  3. UbiCom. Ubiquitous Communications: Aiming at a new generation systems and applications for personal communication. DIOC program at Delft University of Technology. 2000.http://www.ubicom.tudelft.nl.

  4. Holloway RL. Registration error analysis for augmented reality. Presence, 1997, 6 (4), 413–432.

    Google Scholar 

  5. Poot HJG de. Monocular perception of motion in depth. Doctoral dissertation, Faculty of Biology, University of Utrecht, Utrecht, The Netherlands, 1995. ISBN 90393–0820-9.

    Google Scholar 

  6. Padmos P, Milders MV. Quality criteria for simulator images: A literature review. Human Factors, 1992, 34 (6), 727–748.

    Google Scholar 

  7. Pasman W, Schaaf A van der, Lagendijk RL, Jansen FW. Accurate overlaying for mobile augmented reality. Computers & Graphics, 1999, 23(6), 875–881.

    Article  Google Scholar 

  8. Olano M, Cohen J, Mine M, Bishop G. Combatting rendering latency. Proceedings of the 1995 symposium on interactive 3D graphics (Monterey, CA, April 9–12), 1995, 19–24 and 204.http://www.cs.unc.edu/~olano/papers/latency.

    Book  Google Scholar 

  9. Youngblut C, Johnson RE, Nash SH, Wienclaw RA, Will CA. Review of Virtual Environment Interface Technology. Internal report P-3186, Institute for Defense Analyses (IDA), Alexandria, VA, 1996.http://www.hitl.washington.edu/scivw/IDA/.

    Google Scholar 

  10. Borenstein J, Everett HR, Feng L: Where am I? Sensors and Methods for Mobile Robot Positioning. Technical Report, University of Michigan, 1996. http://www-personal.engin.umich.edu/~johannb/position.htm.

    Google Scholar 

  11. Azuma R, Hoff B, Neely H, Sarfaty R. A Motion-Stabilized Outdoor Augmented Reality System. Proceedings of IEEE VR ’99 (Houston, TX, 252–259 March), 1999, 13–17. Available Internet:http://www.cs.unc.edu/~azuma/azuma_publications.html.

    Google Scholar 

  12. Behringer R. Registration for outdoor augmented reality applications using computer vision techniques and hybrid sensors. Proc. IEEE Virtual Reality, 1999, 244–251

    Google Scholar 

  13. Berger M-O, Wrobel-Dautcourt B, Petitjean S, Simon G. Mixing synthetic and video images of an outdoor urban environment. Machine Vision and Applications, 1999, 11(3), 145–159. Available Internet:http://www.loria.fr/equipes/isa/pages/English/Publications.html.

    Article  Google Scholar 

  14. Simon G, Lepetit V, Berger M-O. Registration methods for harmonious integration of real and computer generated objects. Computer Graphics Forum, Conference Issue Eurographics, 1999. Available Internet:http://www.loria.fr/~gsimon/eg99.html.

    Google Scholar 

  15. Brewer E, Burd T, Burghardt F, et al. Design of wireless portable systems. Proc. IEEE Compcon ’95 ’Technologies for the Information Superhighway’, 1995, 169–176.

    Google Scholar 

  16. Pasman W, Schaaf A van der, Lagendijk RL, Jansen FW. Information display for mobile augmented reality: Merging the real and virtual world. Proceedings of the IMC’98 (Rostock, Germany, November 24–25, 1998), 1998. Available Internet:http://www.cg.its/tudelft.nl/~wouter.

    Google Scholar 

  17. Decoret X, Schaufler G, Sillion F, Dorsey J. Multi-layered impostors for accelerated rendering. Computer Graphics Forum (Proceedings of Eurographics ’99), 1999, 18(3), 61–73. Available Internet:http://www-imagis.imag.fr/~JeanMarc.Hasenfratz/EG99/paper-EG99.html.

    Article  Google Scholar 

  18. Aliaga DG, Lastra AA. Smooth transitions in texture-based simplification. Computers Graphics, 1998, 22(1), 71–81.

    Article  Google Scholar 

  19. Garland M. Quadric-based polygonal surface simplification. Doctoral thesis, Carnegie Mellon University, 1999. http://www.cs.cmu.edu/garland/thesis.

    Google Scholar 

  20. Dijk H, Langedoen K, Sips H. ARC: A bottom-up approach to negotiated QoS. Proc. WMCSA’2000 (7–8 December, Monterey, CA), 2000, 128–137.

    Google Scholar 

  21. Davies ER. Machine Vision: theory, algorithms, practicalities. San Diego: Academic press, 1997. ISBN 0–12-206092-X.

    Google Scholar 

  22. Crossbow. FOG-Auto IMU600AA. Crossbow Technology, Inc., 41 E. Daggett Dr., San Jose, CA 95134, 2000.http://www.xbow.com/pdf/FOGAUTO2.PDF.

    Google Scholar 

  23. Persa S, Jonker PP. On positioning for augmented reality systems. Proc. HUC’99 (Handheld and Ubiquitous Computing, Karlsruhe, Germany, September), 1999, 327–330. Springer Verlag, Berlin.

    Google Scholar 

  24. Zlatanova S, Verbree E. A 3D Topological model for augmented reality. proceedings of the MMSA’00 (2nd Int Symp on Mobile Multimedia Systems and Applications, Delft, Netherlands, Nov. 9–10), 2000, 19–26. http://www.geo.tudelft.nl/frs/staff/nisi/ubicom.htm.

  25. Dlabs. Permedia 2. 3D Labs Inc., Sunnyvale, CA 94086, 1999. http://www.3Dlabs.com/products/p2.html.

  26. Bakker JD, Mouw E, Joosen M, Pouwelse J. The LART Pages. Delft University of Technology, Faculty of Information Technology and Systems, 2000. http://www.lart.tudelft.nl.

  27. Harris C. Tracking with Rigid Models. In A. Blake, Yuille (Eds), Active Vision, 1992, 59–74. MIT Press.

    Google Scholar 

  28. Schmid C, Zisserman A. The geometry and matching of lines and curves over multiple views. International Journal on Computer Vision, 2000, 40(3), 199–234.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this paper

Cite this paper

Pasman, W., Persa, S., Jansen, F.W. (2001). Realistic low-latency mobile AR rendering. In: Virtual and Augmented Architecture (VAA’01). Springer, London. https://doi.org/10.1007/978-1-4471-0337-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0337-0_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-456-7

  • Online ISBN: 978-1-4471-0337-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics