Skip to main content

The Token Repository Service: A Universal and Scalable Mechanism for Constructing Multicast Acknowledgment Trees

  • Chapter
Multimedia Internet Broadcasting

Part of the book series: Computer Communications and Networks ((CCN))

  • 102 Accesses

Abstract

Multicast support is a prerequisite for many applications to ensure scalability for large receiver groups. Although multicast support is already available in the Internet, the provided IP multicast service offers only best effort semantics [5]. Several protocols have been proposed to overcome this drawback by a protocol layer on top of IP multicast [7, 10, 16, 19, 20].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajaj S., Breslau L., Estrin D., Fall K., Floyd S., Haldar P., Handley M., Helmy A., Heidemann J., Huang P., Kumar S., McCanne S., Rejaie R., Sharma P., Varadhan K., Xu Y., Yu H., Zappala D.(1999). Improving simulation for network research, Technical Report 99–702, University of Southern California, 1999.

    Google Scholar 

  2. Boggs D. (1983). Internet broadcasting, Ph.D. Th., XEROX Palo Alto Research Center, Technical Report CSL-83–3, 1983.

    Google Scholar 

  3. Calvert K., Doar M.B., Zegura E.W. (1997). Modelling Internet topology, IEEE Communications Magazine, June 1997.

    Google Scholar 

  4. Chiu D. M., Hurst S., Kadansky J., Wesley J. (1998). TRAM: A tree-based reliable multicast protocol, Sun Microsystems Laboratories Technical Report Series, TR-98–66, 1998.

    Google Scholar 

  5. Deering S. (1989). Host extensions for IP multicasting, RFC 11–12.

    Google Scholar 

  6. Estrin D., Farinacci D., Helmy A., Thaler D., Deering S., Handley M., Jacobson V., Liu C., Sharma P., Wei L. (1998). Protocol independent multicast-sparse mode (PIM-SM): protocol specification, RFC 23–62.

    Google Scholar 

  7. Hofmann M. (1996): Adding scalability to transport level multicast, Lecture Notes in Computer Science, No. 1185, pp 41–55.

    Article  Google Scholar 

  8. Levine B.N., Lavo D.B., Garcia-Luna-Aceves J.J. (1996). The case for reliable concurrent multicasting using shared ACK trees, Proceedings of the fourth ACM International Conference on Multimedia, 1996, pp 365–376.

    Google Scholar 

  9. Levine B.N., Garcia-Luna-Aceves J.J. (1996). A comparison of known classes of reliable multicast protocols, Proceedings of the IEEE International Conference on Network Protocols, pp 112–121.

    Google Scholar 

  10. Lin J.C., Paul S. (1996). RMTP: A reliable multicast transport protocol, Proceedings of the Conference on Computer Communications (IEEE Infocom), pp 1414–1424.

    Google Scholar 

  11. Maihöfer C. (2000). Improving multicast ACK tree construction with the Token Repository Service, IEEE ICDCS Workshop, pp C57—C64.

    Google Scholar 

  12. Maihöfer C. (2000). Scalable and reliable multicast ACK tree construction with the Token Repository Service, Proceedings of the International Conference on Networks (IEEE ICON), pp 351–358.

    Google Scholar 

  13. Maihöfer C. (2000). A bandwidth analysis of reliable multicast transport protocols, to appear in Proceedings of the Second International Workshop on Networked Group Communication (NGC).

    Google Scholar 

  14. Maihöfer C., Rothermel K. (1999). Constructing height-balanced multicast acknowledgment trees with the Token Repository Service, Technical Report 1999/15, University of Stuttgart, Faculty for Computer Science.

    Google Scholar 

  15. Maihöfer C., Rothermel K., Mantei N. (2000). A throughput analysis of reliable multicast transport protocols, to appear in Proceedings of the Ninth International Conference on Computer Communications and Networks (IEEE ICCCN).

    Google Scholar 

  16. Pingali S., Towsley D., Kurose F. (1994): A comparison of sender-initiated and receiver-initiated reliable multicast protocols, Proceedings of ACM SIGMETRICS, pp 221–230.

    Google Scholar 

  17. Rothermel K., Maihöfer C. (1999). A robust and efficient mechanism for constructing multicast acknowledgment trees, Proceedings of the IEEE Eighth International Conference on Computer Communications and Networks (IEEE ICCCN’99), pp 139–145.

    Google Scholar 

  18. Waitzman D., Partridge C., Deering S. (1988). Distance vector multicast routing protocol, RFC 10–75.

    Google Scholar 

  19. Whetten B., Taskale G. (2000). An overview of the reliable multicast transport protocol II, IEEE Network, 14, 1, pp 37–47.

    Article  Google Scholar 

  20. Yavatkar R., Griffioen J., Sudan M. (1995). A reliable dissemination protocol for interactive collaborative applications, Proceedings of the third ACM International Conference on Multimedia, pp 333–344.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this chapter

Cite this chapter

Maihöfer, C. (2001). The Token Repository Service: A Universal and Scalable Mechanism for Constructing Multicast Acknowledgment Trees. In: Sloane, A., Lawrence, D. (eds) Multimedia Internet Broadcasting. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-4471-0327-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0327-1_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-283-9

  • Online ISBN: 978-1-4471-0327-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics