Skip to main content

Splicing Systems, Aqueous Computing, and Beyond

  • Conference paper
Unconventional Models of Computation, UMC’2K

Part of the book series: Discrete Mathematics and Theoretical Computer Science ((DISCMATH))

Abstract

The origin of the splicing system concept is reviewed and the original motivation for the concept is given. The concept of an aqueous computing architecture is sketched in a manner independent of specific implementations. Wet lab computations made using biomolecular implementations are reported. Hopes for future non-biomolecular realizations are confided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Adleman, Molecular computation of solutions to combinatorial problems, Science 266(1994) 1021–1024.

    Article  Google Scholar 

  2. K. Culik II & T. Harju, Splicing semigroups of dominoes and DNA, Discrete Appl. Math. 31(1991) 261–277.

    MathSciNet  MATH  Google Scholar 

  3. A DeLuca & A Restivo, A characterization of strictly locally testable languages and its application to subsemigroups of a free semigroup, Inform. & Control 44(1980) 300–319.

    Article  MathSciNet  Google Scholar 

  4. K.L. Denninghoff & R. Gatterdam, On the undecidability of splicing systems, Inter. J. Computer Math., 27(1998) 133–145.

    Article  Google Scholar 

  5. D. Faulhammer, AR. Cukras, R.J. Lipton, & L. Landweber, Molecular computation: RNA solutions to chess problems, PNAS 97(2000) 1385–1389.

    Article  Google Scholar 

  6. M.R. Garey & D.S. Johnson, Computers and Intractibility A Guide to the Theory of NP-Completeness, Freeman, New York (1979).

    Google Scholar 

  7. R. Gatterdam, Splicing systems and regularity, Intern. J. Computer Math., 31(1989) 63–67.

    Article  MATH  Google Scholar 

  8. R. Gatterdam, Algorithms for splicing systems, SIAM J. Computing, 21(1992) 507–520.

    MATH  Google Scholar 

  9. T. Head, Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors, Bull. Math. Biology, 49(1987) 737–759.

    MathSciNet  MATH  Google Scholar 

  10. T. Head, Circular suggestions for DNA computing, in: Pattern Formation in Biology, Vision and Dynamics, Ed. by, A. Carbone, M. Gromov, & P. Prusinkiewicz, World Scientific, Singapore (2000) 325–335, QH491.C37 1999.

    Google Scholar 

  11. T. Head, Writing by methylation proposed for aqueous computing, (to appear).

    Google Scholar 

  12. T. Head, Biomolecular realizations of a parallel architecture for solving combinatorial problems, (submitted).

    Google Scholar 

  13. T. Head, Gh. Paun, & D. Pixton, Language theory and molecular genetics: generative mechanisms suggested by DNA recombination, Chapter 7 of Vol. 2 of: Handbook of Formal Languages, Ed, by G. Rozenberg & A. Salomaa, Springer-Verlag (1997).

    Google Scholar 

  14. T. Head, G. Rozenberg, R. Bladergroen, C.K.D. Breek, & P.H.M. Lommerese, Computing with DNA by operating on plasmids, Bio Systems, (to appear).

    Google Scholar 

  15. T. Head, M. Yamamura, & S. Gal, Aqueous computing: writing on molecules, in: Proc. Congress on Evolutionary Computation 1999, IEEE Service Center, Piscataway, NJ (1999) 1006–1010.

    Google Scholar 

  16. R.W. Hendrix, J.W. Roberts, F.W. Stahl, & R.A. Weisberg, Eds., Lambda-II, Cold Springs Harbor Laboratory, New York (1983).

    Google Scholar 

  17. G.T. Herman & G. Rozenberg, Developmental Systems and Languages, North Holland, New York (1975).

    Google Scholar 

  18. J.E. Hopcroft & J.D. Ullman, Introduction to Automata Theory, Languages, and Computing, Addison-Wesley, Reading, MA (1979).

    MATH  Google Scholar 

  19. E. Laun & K.J. Reddy, Wet splicing systems, in: Proc. DIMACS Series in Discrete Math & Theor. Compo Sci., Vol. 48, Eds., H. Rubin & D. Wood (1999) 73–83.

    Google Scholar 

  20. B. Lewin, Genes, Wiley, New York (1983) [Updated as: Genes II, Genes III, etc.]

    Google Scholar 

  21. A. Lindenmayer, Mathematical models of cellular interactions in development I, II, J. Theoretical Biology 18(1968) 280–315.

    Article  Google Scholar 

  22. R.J. Lipton, DNA solution of computational problems, Science 268(1995) 542–545.

    Article  Google Scholar 

  23. Q. Ouyang, P.D. Kaplan, P.D.S. Liu, & A. Libchaber, DNA solution ofthe maximal clique problem, Science 278(1997) 446–449.

    Article  Google Scholar 

  24. Gh. Paun, G. Rozenberg, & A. Salomaa, Computing by splicing, Theor. Comput. Sci. 168(1996) 321–336.

    Article  MathSciNet  MATH  Google Scholar 

  25. Gh. Paun, G. Rozenberg, & A. Salomaa, DNA Computing New Computing Paradigms, Springer-Verlag, Berlin (1998).

    MATH  Google Scholar 

  26. Gh. Paun & A. Salomaa, DNA computing based on the splicing operation, Math. Japonica 43(1996) 607–632.

    MathSciNet  MATH  Google Scholar 

  27. D. Pixton, Regularity of splicing systems, Discrete Appl. Math. 69(1996) 101–124.

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Pixton, Splicing in abstract families of languages, Theoret. Comput. Sci. 234(2000) 135–166.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Prusinkiewicz & A. Lindenmayer, The Algorithmic Beauty of Plants, Springer-Verlag, New York (1990).

    Book  MATH  Google Scholar 

  30. G. Rozenberg & A. Salomaa, The Mathematical Theory of L-Systems, Academic Press, New York (1980).

    MATH  Google Scholar 

  31. R. Siromoney, K.G. Subramanian & V.R. Dare, Circular DNA and splicing systems, in: LNCS, Ed. by A. Nakamura, A. Saoudi, P.S.P. Wang, & K. Inoue, Springer, New York 654(1992) 260–273.

    Google Scholar 

  32. T. Yokomori, S. Kobayashi, & C. Ferretti, On the power of circular splicing systems, and DNA computability, IEEE Intern. Conf. on Evolutionary Comput. (1997) 219–224.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this paper

Cite this paper

Head, T. (2001). Splicing Systems, Aqueous Computing, and Beyond. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds) Unconventional Models of Computation, UMC’2K. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0313-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0313-4_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-415-4

  • Online ISBN: 978-1-4471-0313-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics