Skip to main content

An Unconventional Computational Linear Algebra: Operator Trigonometry

  • Conference paper
Unconventional Models of Computation, UMC’2K

Part of the book series: Discrete Mathematics and Theoretical Computer Science ((DISCMATH))

Abstract

Conventional computational linear algebra is chiefly concerned with the linear solver problem: Ax = b. Many fine algorithms for many situations have been found and these are widely utilized in scientific computing. The theory and practice of general linear solvers is intimately linked to the eigenvalues and eigenvectors of the matrix A. Here I will present a theory of antieigenvalues and antieigenvectors for matrices or operators A and show how that theory is also intimately linked to computational linear algebra. I will also present new applications of this theory, which I call operator trigonometry, to Statistics and Quantum Mechanics. Also I will give some hitherto unpublished insights into the operator trigonometry, its origins, meaning, and future potential. Finally, I will present a fundamental new view of sin φ(A).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Gustafson, Lectures on Computational Fluid Dynamics, Mathematical Physics, and Linear Algebra, World Scientific, Singapore (1997).

    Google Scholar 

  2. K. Gustafson and D. Rao, Numerical Range, Springer (1997).

    Google Scholar 

  3. K. Gustafson, Notices American Mathematical Society 14 (1967), 520, 717, 824, 943.

    Google Scholar 

  4. K. Gustafson, Notices American Mathematical Society 15 (1968),699.

    Google Scholar 

  5. K. Gustafson, Ergodic learning algorithms, Unconventional Models of Computation (eds: C. Calude, J. Casti, M. Dinneen), Springer (1998),228–242.

    Google Scholar 

  6. K. Gustafson, An extended operator trigonometry, Linear Algebra and Applications (2000), to appear.

    Google Scholar 

  7. K. Gustafson, Antieigenvalues in analysis, Proceedings Fourth International Workshop in Analysis and its Applications (eds: C. Stanojevic, O. Hadzic), Dubrovnik, 1990; Novi Sad, Yugoslavia (1991), 57–69.

    Google Scholar 

  8. K. Gustafson, Positive (noncommuting) operator products and semigroups, Math. Z. 105 (1968), 160–172.

    Google Scholar 

  9. K. Gustafson, The geometrical meaning of the Kantorovich—Wielandt inequalities, Linear Algebra and its Applications 296 (1999),143–151.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Gustafson, Operator trigonometry of iterative methods, Num. Lin. Alg. with Applic. 4 (1997), 333–347.

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Gustafson, Domain decomposition, operator trigonometry, Robin condition, Contemporary Mathematics 218 (1998),455–460.

    Google Scholar 

  12. K. Gustafson, Operator trigonometry of the model problem, Num. Lin. Alg. with Applic. 5 (1998),377–399.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Gustafson, Operator trigonometry of statistics and econometrics, (2000), to appear.

    Google Scholar 

  14. K. Gustafson, The geometry of quantum probabilities, On Quanta, Mind, and Matter (eds: H. Atmanspacher, A. Amann, U. Millier-Herold), Kluwer, Dordrecht (1999),151–164.

    Google Scholar 

  15. K. Gustafson, Quantum trigonometry, Infinite Dimensional Analysis, Quantum Probability, and Related Topics 3 (2000),33–52.

    Google Scholar 

  16. K. Gustafson, The trigonometry of quantum probabilities, Trends in Contemporary Infinite Dimensional Analysis and Quantum Probability, (eds: L. Accardi, H-H Kuo, N. Obata, K. Saito, S. Si, L. Streit) Italian Institute of Culture, Kyoto (2000), 159–173.

    Google Scholar 

  17. K. Gustafson, Operator trigonometry of linear systems, Proc. 8th IFAC Symposium on Large Scale Systems (eds: N. Koussoulas, P. Groumpos), Pergamon Press (1999), 950–955.

    Google Scholar 

  18. K. Gustafson, Operator trigonometry of wavelet frames, Iterative Methods in Scientific Computation (eds: J. Wang, M. Allen, B. Chen, T. Mathew), IMACS Series in Computational and Applied Mathematics 4, New Brunswick, NJ (1998), 161–166.

    Google Scholar 

  19. K. Gustafson, A computational trigonometry and related contributions by Russians Kantorovich, Krein, Kaporin, Computational Technologies 4 (No.3), Novosibirsk (1999), 73–93.

    MathSciNet  MATH  Google Scholar 

  20. K. Gustafson, Parallel computing forty years ago, Mathematics and Computers in Simulation 51 (1999),47–62.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this paper

Cite this paper

Gustafson, K. (2001). An Unconventional Computational Linear Algebra: Operator Trigonometry. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds) Unconventional Models of Computation, UMC’2K. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0313-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0313-4_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-415-4

  • Online ISBN: 978-1-4471-0313-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics