Skip to main content

Quantum Information: The New Frontier

  • Conference paper
Book cover Unconventional Models of Computation, UMC’2K

Part of the book series: Discrete Mathematics and Theoretical Computer Science ((DISCMATH))

  • 141 Accesses

Abstract

Quantum information and computation is the new hype in physics. It is promising, mind boggling and even already applicable in cryptography, with good prospects ahead. A brief, rather subjective outline is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cristian Calude and F. Walter Meyerstein. Is the universe lawful? Chaos, Solitons & Fractals, 10(6):1075–1084, 1999.

    Article  Google Scholar 

  2. Karl Svozil. Quantum interfaces. e-print arXiv:quant-ph/0001064 available http://arxiv.org/abs/quant-ph/0001064, 2000.

    Google Scholar 

  3. John A. Wheeler. Law without law. In John A. Wheeler and W H. Zurek, editors, Quantum Theory and Measurement, pages 182-213. Princeton University Press, Princeton,1983. (49).

    Google Scholar 

  4. Daniel M. Greenberger. Private communication.

    Google Scholar 

  5. David Hilbert. Über das Unendliche. Mathematische Annalen, 95: 161–190, 1926.

    Article  MathSciNet  Google Scholar 

  6. Erwin Schrodinger. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften, 23:807–812, 823–828, 844–849, 1935. English translation in [71] and [49, pp. 152-167).

    Article  Google Scholar 

  7. Simon Kochen and Ernst P. Specker. The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17(1):59–87, 1967. Reprinted in [72, pp. 235-263].

    MathSciNet  MATH  Google Scholar 

  8. W. K. Wooters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299:802–803, 1982.

    Article  Google Scholar 

  9. D. Dieks. Communication by EPR devices. Physics Letters, 92A(6):271–272, 1982.

    Google Scholar 

  10. L. Mandel. Is a photon amplifier always polarization dependent? Nature, 304:188, 1983.

    Article  Google Scholar 

  11. Peter W. Milonni and M. L. Hardies. Photons cannot always be replicated. Physics Letters, 92A(7):321–322, 1982.

    Google Scholar 

  12. R. J. Glauber. Amplifiers, attenuators and the quantum theory of measurement. In E. R. Pikes and S. Sarkar, editors, Frontiers in Quantum Optics. Adam Hilger, Bristol, 1986.

    Google Scholar 

  13. C. M. Caves. Quantum limits on noise in linear amplifiers. Physical Review, D26:1817–1839, 1982.

    Google Scholar 

  14. Simon Kochen and Ernst P. Specker. Logical structures arising in quantum theory. In Symposium on the Theory of Models, Proceedings of the 1963 International Symposium at Berkeley, pages 177–189, Amsterdam, 1965. North Holland. Reprinted in [72, pp. 209-221].

    Google Scholar 

  15. Simon Kochen and Ernst P. Specker. The calculus of partial propositional functions. In Proceedings of the 1964 International Congress for Logic, Methodology and Philosophy of Science, Jerusalem, pages 45–57, Amsterdam, 1965. North Holland. Reprinted in [72, pp. 222-234].

    Google Scholar 

  16. Garrett Birkhoff and John von Neumann. The logic of quantum mechanics. Annals of Mathematics, 37(4):823–843, 1936.

    Article  MathSciNet  Google Scholar 

  17. Charles H. Bennett, R Bessette, G. Brassard, L. Salvail, and J. Smolin. Experimental quantum cryptography. Journal of Cryptology, 5:3–28, 1992.

    Article  MATH  Google Scholar 

  18. Edward F. Moore. Gedanken-experiments on sequential machines. In C. E. Shannon and J. McCarthy, editors, Automata Studies. Princeton University Press, Princeton, 1956.

    Google Scholar 

  19. Cristian Calude, Elena Calude, Karl Svozil, and Sheng Yu. Physical versus computational complementarity I. International Journal of Theoretical Physics, 36(7):1495–1523,1997.

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Svozil. Quantum Logic. Springer, Singapore, 1998.

    Google Scholar 

  21. Artur Ekert. Quantum cryptography based on Bell’s theorem. Physical Review Letters, 67:661–663, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Hamrick G. Gilbert. Practical quantum cryptography: A comprehensive analysis (part one). MITRE report MTR 00W0000052 and e-print arXiv: quant-ph/0009027 available at http://arxiv.org/abs/quant-ph/0009027, 2000.

    Google Scholar 

  23. T. Jenewein, G. Weihs, C. Simon, H. Weinfurter, and A. Zeilinger. Poster, 1998.

    Google Scholar 

  24. Karl Svozil. The information interpretation of quantum mechanics. e-print arXiv: quant-ph/0006033 available http://arxiv.org/abs/quant-ph/0006033, 2000.

    Google Scholar 

  25. F. D. Murnaghan. The Unitary and Rotation Groups. Spartan Books, Washington, 1962.

    MATH  Google Scholar 

  26. Peter W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium of on Foundations of Computer Science, Santa Fe, NM, Nov. 20-22, 1994. IEEE Computer Society Press, November 1994. arXiv:quant-ph/9508027.

    Google Scholar 

  27. Artur Ekert and Richard Jozsa. Quantum computation and Shor’s factoring algorithm. Reviews of Modern Physics, 68(3):733–753, 1996.

    Article  MathSciNet  Google Scholar 

  28. L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pages 212–219. 1996.

    Google Scholar 

  29. Josef Gruska. uantum Computing. McGraw-Hill, London, 1999.

    Google Scholar 

  30. Georg Gottlob. Private communication.

    Google Scholar 

  31. Cristian S. Calude, Michael J. Dinneen, and Karl Svozil. Reflections on quantum computing. Complexity, 2000. in print; e-print http://wwv.cs.auckland.ac.nz/CDMTCS//researchreports/130cris.pdf.

    Google Scholar 

  32. Günther Mahler. private communication.

    Google Scholar 

  33. Max Planck. Ueber eine Verbesserung der Wien’schen Spectralgleichung. Verhandlungen der deutschen physikalischen Gesellschaft, 2:202,1900. See also [34].

    Google Scholar 

  34. Max Planck. Ueber das Gesetz der Energieverteilung im Normalspectrum. Annalen der Physik, 4:553–566, 1901.

    Article  MATH  Google Scholar 

  35. Max Planck. Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum. Verhandlungen der deutschen physikalischen Gesellschaft, 2:237, 1900. See also [34].

    Google Scholar 

  36. Albert Einstein. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 17:132–148, 1905.

    Article  MATH  Google Scholar 

  37. Richard P. Feynman, Robert B. Leighton, and Matthew Sands. The Feynman Lectures on Physics. Quantum Mechanics, volume III. Addison-Wesley, Reading, MA, 1965.

    Google Scholar 

  38. E. G. Harris. A Pedestrian Approach to Quantum Field Theory. Wiley-Interscience, New York, 1971.

    Google Scholar 

  39. H. J. Lipkin. Quantum Mechanics, New Approaches to Selected Topics. North-Holland, Amsterdam, 1973.

    Google Scholar 

  40. L. E. Ballentine. Quantum Mechanics. Prentice Hall, Englewood Cliffs, NJ, 1989.

    Google Scholar 

  41. A. Messiah. Quantum Mechanics, volume I. North-Holland, Amsterdam, 1961.

    Google Scholar 

  42. A. S. Davydov. Quantum Mechanics. Addison-Wesley, Reading, MA, 1965.

    Google Scholar 

  43. P. A. M. Dirac. The Principles of Quantum Mechanics. Oxford University Press, Oxford, 1947.

    MATH  Google Scholar 

  44. Asher Peres. Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, Dordrecht, 1993.

    MATH  Google Scholar 

  45. George W. Mackey. The Mathematical Foundations of Quantum Mechanics. W. A. Benjamin, Reading, MA, 1963.

    MATH  Google Scholar 

  46. John von Neumann. Mathematische Grundlagen der Quantenmechanik. Springer, Berlin, 1932. English translation: Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, 1955.

    MATH  Google Scholar 

  47. John S. Bell. Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge, 1987.

    MATH  Google Scholar 

  48. Max Jammer. The Philosophy of Quantum Mechanics. John Wiley & Sons, New York, 1974.

    Google Scholar 

  49. John Archibald Wheeler and Wojciech Hubert Zurek. Quantum Theory and Measurement. Princeton University Press, Princeton, 1983.

    Google Scholar 

  50. N. Dunford and J. T. Schwartz. Linear Operators I. Interscience Publishers, New York, 1958.

    MATH  Google Scholar 

  51. Michael Reed and Barry Simon. Methods of Mathematical Physics I: Functional Analysis. Academic Press, New York, 1972.

    MATH  Google Scholar 

  52. Michael Reed and Barry Simon. Methods of Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, New York, 1975.

    MATH  Google Scholar 

  53. M. Reck, Anton Zeilinger, H. J. Bernstein, and P. Bertani. Experimental realization of any discrete unitary operator. Physical Review Letters, 73:58–61, 1994. See also [25].

    Article  Google Scholar 

  54. Daniel B. Greenberger and A. YaSin. “Haunted” measurements in quantum theory. Foundation of Physics, 19(6):679–704,1989.

    Article  Google Scholar 

  55. Thomas J. Herzog, Paul G. Kwiat, Harald Weinfurter, and Anton Zeilinger. Complementarity and the quantum eraser. Physical Review Letters, 75(17):3034–3037, 1995.

    Article  Google Scholar 

  56. David Finkelstein and Shlomit R. Finkelstein. Computational complementarity. International Journal of Theoretical Physics, 22(8):753–779,1983.

    Article  MathSciNet  MATH  Google Scholar 

  57. Gregory J. Chaitin. An improvement on a theorem by E. F. Moore. IEEE Transactions on Electronic Computers, EC-14:466-467, 1965.

    Google Scholar 

  58. J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall Ltd., London, 1971.

    MATH  Google Scholar 

  59. W. Brauer. Automatentheorie. Teubner, Stuttgart, 1984.

    Google Scholar 

  60. Karl Svozil. Randomness & Undecidability in Physics. World Scientific, Singapore, 1993.

    MATH  Google Scholar 

  61. Martin Schaller and Karl Svozil. Partition logics of automata. Il Nuovo Cimento, 109B:167–176, 1994.

    MathSciNet  Google Scholar 

  62. Martin Schaller and Karl Svozil. Automaton partition logic versus quantum logic. International Journal of Theoretical Physics, 34(8): 1741–1750, August 1995.

    Article  MathSciNet  MATH  Google Scholar 

  63. Martin Schaller and Karl Svozil. Automaton logic. International Journal of Theoretical Physics, 35(5):911–940, May 1996.

    Article  MathSciNet  MATH  Google Scholar 

  64. Anatolij Dvurečenskij, Sylvia Pulmannová, and Karl Svozil. Partition logics, orthoalgebras and automata. Helvetica Physica Acta, 68:407–428, 1995.

    MathSciNet  MATH  Google Scholar 

  65. Karl Svozil and Roman R. Zapatrin. Empirical logic of finite automata: microstatements versus macrostatements. International Journal of Theoretical Physics, 35(7):1541–1548,1996.

    Article  MathSciNet  MATH  Google Scholar 

  66. Karl Svozil and Josef Tkadlec. Greechie diagrams, nonexistence of measures in quantum logics and Kochen-Specker type constructions. Journal of Mathematical Physics, 37(11):5380–5401, November 1996.

    Article  MathSciNet  MATH  Google Scholar 

  67. M. Reck and Anton Zeilinger. Quantum phase tracing of correlated photons in optical multiports. In F. De Martini, G. Denardo, and Anton Zeilinger, editors, Quantum Interferometry, Singapore, 1994. World Scientific.

    Google Scholar 

  68. Charles H. Bennett. Night thoughts, dark sight. Nature, 371:479–480, 1994.

    Article  Google Scholar 

  69. B. Yurke, S. L. McCall, and J. R. Klauder. SU(2) and SU(1,1) interferometers. Physical Review, A33:4033–4054, 1986.

    Google Scholar 

  70. R. A. Campos, B. E. A. Saleh, and M. C. Teich. Fourth-order interference of joint single-photon wave packets in lossless optical systems. Physical Review, A42:4127, 1990.

    Google Scholar 

  71. J. D. Trimmer. The present situation in quantum mechanics: a translation of Schrödinger’s “cat paradox”. Proc. Am. Phil. Soc., 124:323–338, 1980. Reprinted in [49, pp. 152-167].

    Google Scholar 

  72. Ernst Specker. Selecta. Birkhäuser Verlag, Basel, 1990.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this paper

Cite this paper

Svozil, K. (2001). Quantum Information: The New Frontier. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds) Unconventional Models of Computation, UMC’2K. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0313-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0313-4_19

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-415-4

  • Online ISBN: 978-1-4471-0313-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics