Skip to main content

Inaccessibility in Decision Procedures

  • Conference paper
Unconventional Models of Computation, UMC’2K

Part of the book series: Discrete Mathematics and Theoretical Computer Science ((DISCMATH))

  • 141 Accesses

Abstract

To study physical the realizability of “computational” procedures, the notion of “inaccessibility” is introduced. As specific examples, the halting set of a universal Turing machine, the Mandelbrot set, and a riddled basin, all of which are defined by decision procedures, are studied. Decision procedures of a halting set of a universal Turing machine and the Mandelbrot set are shown to be inaccessible, that is, the precision of the decision in these procedures cannot be increased asymptotically as the error is decreased to 0. On the other hand, the decision procedure of a riddled basin is shown to have different characteristics regarding (in) accessibility, from the other two instances. The physical realizability of computation models is discussed in terms of the inaccessibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. M. Turing, “On computable numbers with an application to the Entscheidungsproblem,” Proc. London Math. Soc. 42 (1936), 230.

    MathSciNet  Google Scholar 

  2. J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages and computation (Addison-Wesley, Reading, Mass., 1979).

    MATH  Google Scholar 

  3. M. Davis, Computability & unsolvability (Dover, New York, 1982).

    Google Scholar 

  4. H. T. Siegelmann and S. Fishman, “Analog computation with dynamical systems,” Physica D 120 (1998),214.

    Article  MATH  Google Scholar 

  5. B. B. Mandelbrot, The fractal geometry of nature (W.H. Freeman, New York, 1983).

    Google Scholar 

  6. M. F. Barnsley, Fractals everywhere (Academic Press, Boston, 1988).

    MATH  Google Scholar 

  7. K. J. Falconer, The geometry of fractal sets (Cambridge University Press, Cambridge, 1985).

    Book  MATH  Google Scholar 

  8. E. Ott, Chaos in dynamical systems (Cambridge University Press, Cambridge, 1993).

    MATH  Google Scholar 

  9. J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields (Springer-Verlag, New York, 1983).

    MATH  Google Scholar 

  10. R. L. Devaney, A first course in chaotic dynamical systems: theory and experiment (Addison-Wesley, Reading, Mass., 1992); An introduction to chaotic dynamical systems (Addison-Wesley, Redwood City, Calif., 1989).

    MATH  Google Scholar 

  11. C. Moore, “Generalized shifts: unpredictability and undecidability in dynamical systems,” Nonlinearity 4 (1991), 199; “Unpredictability and undecidability in dynamical systems,” Phys. Rev. Lett. 64 (1990),2354.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Shimada, Talk at international symposium on information physics 1992, Kyushu institute of technology.

    Google Scholar 

  13. S. Wolfram, “Undecidability and intractability in theoretical physics,” Phys. Rev. Lett. 54 (1985),735.

    Article  MathSciNet  Google Scholar 

  14. A. Saito and K. Kaneko, “Geometry of undecidable systems,” Prog. Theor. Phys. 99 (1998),885; “Inaccessibility and Undecidability in Computation, Geometry and Dynamical Systems,” submitted to Physica D.

    Article  Google Scholar 

  15. T. Kamae and S. Takahashi, Ergodic theory and fractals (Springer, Tokyo, 1993).

    Google Scholar 

  16. G. de Rham, “Sur quelques courbes definies par des équations fonctionnelles,” Rend. Sem. Mat. Torino 16 (1957),101.

    Google Scholar 

  17. P. Grassberger, “Generalized dimensions of strange attractors,” Phys. Lett. 97A (1983),227.

    MathSciNet  Google Scholar 

  18. N. Chomsky, “Three models for the description of language,” IRE Trans. on Information Theory 2 (1956), 113; “On certain formal properties of grammars,” Information and Control 2 (1959), 137.

    Article  MATH  Google Scholar 

  19. Y. Rogozhin, “Small universal Turing machines,” Theor. Comput. Sci. 168 (1996), 215.

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Staiger, “w-Languages,” in Handbook of formal languages 3, edited by G. Rozenberg and A. Salomaa (Springer, Berlin, 1997).

    Google Scholar 

  21. W. Thomas, “Automata on infinite objects,” in Handbook of theoretical computer science B, edited by J. van Leeuwen (Elsevier, Amsterdam, 1990).

    Google Scholar 

  22. J. D. Farmer, “Sensitive dependence on parameters in nonlinear dynamics,” Phys. Rev. Lett. 55 (1985),351.

    Article  MathSciNet  Google Scholar 

  23. C. Grebogi et al., “Exterior dimension of fat fractals,” Phys. Lett. A 110 (1985), 1.

    Article  MathSciNet  Google Scholar 

  24. R. Penrose, The emperor’s new mind (Oxford University Press, Oxford, 1989).

    Google Scholar 

  25. L. Blum, et al., Complexity and real computation (Springer, New York, 1998).

    Google Scholar 

  26. M. Shishikura, “The boundary of the Mandelbrot set has Hausdorff dimension two,” Astérisque 222 (1994), 389.

    MathSciNet  Google Scholar 

  27. E. Ott, et al., “The transition to chaotic attractors with riddled basins,” Physica D 76 (1994), 384.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. C. Sommerer and E. Ott, “A physical system with qualitatively uncertain dynamics,” Nature 365 (1993), 138.

    Article  Google Scholar 

  29. E.Ott et al., “Scaling behavior of chaotic systems with riddled basins,” Phys. Rev. Lett. 71 (1993),4134.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Milnor, “On the concept of attractor,” Commun. Math. Phys. 99 (1985), 177.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. B. Pour-EI and J. I. Richards, Computability in analysis and physics (Springer Verlag, Berlin, 1989).

    MATH  Google Scholar 

  32. H. T. Siegelmann and E. D. Sontag, “Analog computation via neural networks,” Theor. Comput. Sci. 131 (1994),331.

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Moore, “Recursion theory on the reals and continuous-time computation,” Theor. Comput. Sci. 162 (1996),23.

    Article  MATH  Google Scholar 

  34. R. Penrose, Shadows of the mind (Oxford University Press, Oxford, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this paper

Cite this paper

Saito, A., Kaneko, K. (2001). Inaccessibility in Decision Procedures. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds) Unconventional Models of Computation, UMC’2K. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0313-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0313-4_17

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-415-4

  • Online ISBN: 978-1-4471-0313-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics