Upper and Lower Bounds on Continuous-Time Computation

  • Manuel Lameiras Campagnolo
  • Cristopher Moore
Part of the Discrete Mathematics and Theoretical Computer Science book series (DISCMATH)

Abstract

We consider various extensions and modifications of Shannon’s General Purpose Analog Computer, which is a model of computation by differential equations in continuous time. We show that several classical computation classes have natural analog counterparts, including the primitive recursive functions, the elementary functions, the levels of the Grzegorczyk hierarchy, and the arithmetical and analytical hierarchies.

Keywords

Assure Stratification Teal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Arn96]
    V.I. Arnold. Equations Differentielles Ordinaires. Editions Mir, 5 èrne edition, 1996.Google Scholar
  2. [Bab73]
    A. Babakhanian. Exponentials in differentially algebraic extension fields. Duke Math. J., 40:455–458, 1973.MathSciNetMATHCrossRefGoogle Scholar
  3. [TABLEIMAGES***]Google Scholar
  4. [Ban75]
    S. Bank:. Some results on analytic and merom orphic solutions of algebraic differential equations. Advances in mathematics, 15:41–62, 1975.MathSciNetMATHCrossRefGoogle Scholar
  5. [BBV37]
    S. Bose, N. Basu and T. Vijayaraghavan. A simple example for a theorem of Vijayaraghavan. J. London Math. Soc., 12:250–252, 1937.Google Scholar
  6. [Bou99]
    O. Bournez. Achilles and the tortoise climbing up the hyper-arithmetical hierarchy. Theoretical Computer Science, 210 (1):21–71,1999.Google Scholar
  7. [Bou99b]
    O. Bournez. Complexité algorithmique des systemes dynamiques co hybrides. PhD thesis, Ecole Normale Superieure de Lyon, 1999.Google Scholar
  8. [Bow96]
    M.D. Bowles. U.S. technological enthusiasm and the British technological skepticism in the age of the analog brain. IEEE Annals of the History of Computing, 18(4):5–15, 1996.CrossRefGoogle Scholar
  9. [Bra95]
    M. S. Branicky. Universal computation and other capabilities of hybrid and continuous dynamical systems. Theoretical Computer Science, 138(1), 1995.Google Scholar
  10. [BSF00]
    A. Ben-Hur, H. Siegelmann, and S. Fishman. A theory of complexity for continuous time systems. To appear in Journal of Complexity.Google Scholar
  11. [BSS89]
    L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: NP-completnes, recursive functions and universal machines. Bull. Amer. Math. Soc., 21:1–46,1989.MathSciNetMATHCrossRefGoogle Scholar
  12. [CMC99]
    M.L Campagnolo, C. Moore, and J.F. Costa. Iteration, ineqUalities, and differentiability in analog computers. To appear in Journal of Complexity.Google Scholar
  13. [CMC00]
    M.L Campagnolo, C. Moore, and J.E Costa. An analog characterization of the subrecursive functions. In P. Kornerup, editor, Proc. of the 4th Conference on Real Numbers and Computers, pages 91–109. Odense University, 2000.Google Scholar
  14. [Cut80]
    N. J. Cutland. Computability: an introduction to recursive function theory. Cambridge University Press, 1980.Google Scholar
  15. [Grz53]
    A. Grzegorczyk. Some classes of recursive functions. Rosprawy Matematyzne, 4, 1953. Math. Inst. of the Polish Academy of Sciences.Google Scholar
  16. [Grz55]
    A. Grzegorczyk. Computable functionals. Fund. Math., 42:168–202,1955.MathSciNetMATHGoogle Scholar
  17. [Grz57]
    A. Grzegorczyk. On the definition of computable real continuous functions. Fund. Math., 44:61–71, 1957.MathSciNetMATHGoogle Scholar
  18. [Hay96]
    H.K. Hayman. The growth of solutions of algebraic differential equations. Rend. Mat. Acc. Lincei., 7:67–73,1996.MathSciNetMATHGoogle Scholar
  19. [Kál43]
    L. Kalmar. Egyzzerü példa eldonthetetlen aritmetikai problémára. Mate és Fizikai Lapok, 50:1–23,1943.MathSciNetMATHGoogle Scholar
  20. [KCG94]
    P. Koiran, M. Cosnard, and M. Garzon. Computability with low-dimensional dynamical systems. Theoretical Computer Science, 132:113–128,1994.MathSciNetMATHCrossRefGoogle Scholar
  21. [Kel76]
    W. Thomson (Lord Kelvin). On an instrument for calculating the integral of the product of two given functions. Proc. Royal Society of London, 24:266–268, 1876.MATHGoogle Scholar
  22. [KM99]
    P. Koiran and C. Moore. Closed-form analytic maps in one or two dimensions can simulate Turing machines. Theoretical Computer Science, 210:217–223, 1999.MathSciNetMATHCrossRefGoogle Scholar
  23. [Lac55]
    D. Lacombe. Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles I. C. R. Acad. Sci. Paris, 240:2478–2480, 1955.MathSciNetMATHGoogle Scholar
  24. [LR87]
    L. Lipshitz and L. A. Rubel. A differentially algebraic replacement theorem, and analog computation. Proceedings of the A.M.S., 99(2):367–372, 1987.MathSciNetMATHGoogle Scholar
  25. [Mee93]
    K. Meer. Real number models under various sets of operations. Journal of Complexity, 9:366–372, 1993.MathSciNetMATHCrossRefGoogle Scholar
  26. [Moo90]
    C. Moore. Unpredictability and undecidability in dynamical systems. Physical Review Letters, 64:2354–2357, 1990.MathSciNetMATHCrossRefGoogle Scholar
  27. [Mo096]
    C. Moore. Recursion theory on the reals and continuous-time computation. Theoretical Computer Science, 162:23–44,1996.MathSciNetMATHCrossRefGoogle Scholar
  28. [Mo098]
    C. Moore. Dynamical recognizers: real-time language recognition by analog computers. Theoretical Computer Science, 201:99–136,1998.MathSciNetMATHCrossRefGoogle Scholar
  29. [Odi89]
    P. Odifreddi. Classical Recursion Theory. Elsevier, 1989.Google Scholar
  30. [Orp97a]
    P. Orponen. On the computational power of continuous time neural networks. In Proc. SOFSEM’97, the 24th Seminar on Current Trends in Theory and Practice of Informatics, Lecture Notes in Computer Science, pages 86–103. Springer-Verlag, 1997.Google Scholar
  31. [Orp97b]
    P. Orponen. A survey of continuous-time computation theory. In D.-Z. Du and K.-I Ko, editors, Advances in Algorithms, Languages, and Complexity, pages 209–224. Kluwer Academic Publishers, Dordrecht, 1997.CrossRefGoogle Scholar
  32. [PE74]
    M. B. Pour-El. Abtract computability and its relation to the general purpose analog computer. Trans. Amer. Math. Soc., 199:1–28, 1974.MathSciNetMATHCrossRefGoogle Scholar
  33. [PR89]
    M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Springer-Verlag, 1989.MATHGoogle Scholar
  34. [Ros84]
    H. E. Rose. Subrecursion: functions and hierarchies. Clarendon Press, 1984.Google Scholar
  35. [Rub89]
    L. A. Rubel. Digital simulation of analog computation and Church’s thesis. The Journal of Symbolic Logic, 54(3): 1011–1017, 1989.MathSciNetMATHCrossRefGoogle Scholar
  36. [Rub89b]
    L. A. Rubel. A survey of transcendentally transcendental functions. Amer. Math. Monthly, 96:777–788, 1989.MathSciNetMATHCrossRefGoogle Scholar
  37. [SF98]
    H. T. Siegelmann and S. Fishman. Analog computation with dynamical systems. Physica D, 120:214–235,1998.MATHCrossRefGoogle Scholar
  38. [Sha41]
    C. Shannon. Mathematical theory of the differential analyser. J. Math. Phys. MIT, 20:337–354, 1941.MathSciNetMATHGoogle Scholar
  39. [Sie98]
    H. Siegelmann. Neural Netwoks and Analog Computation: Beyond the Turing Limit. Birkhauser, 1998.Google Scholar
  40. [Vij32]
    T. Vijayaraghavan. Sur la croissance des fonctions définies par les équations différentielles. C. R. Acad. Sci. Paris, 194:827–829,1932.Google Scholar
  41. [VSD86]
    A. Vergis, K. Steiglitz, and B. Dickinson. The complexity of analog computation. Mathematics and computers in simulation, 28:91–113, 1986.MATHCrossRefGoogle Scholar
  42. [Zho97]
    Q. Zhou. Subclasses of computable real functions. In T. Jiang and D. T. Lee, editors, Computing and Combinatorics, Lecture Notes in Computer Science, pages 156–165. Springer-Verlag, 1997.Google Scholar

Copyright information

© Springer-Verlag London 2001

Authors and Affiliations

  • Manuel Lameiras Campagnolo
    • 1
  • Cristopher Moore
    • 2
    • 3
    • 4
  1. 1.D.M./I.S.AUniversidade Técnica de UsboaTapada da Ajuda, LisboaPortugal
  2. 2.Computer Science DepartmentUniversity of New MexicoAlbuquerqueUSA
  3. 3.Physics and Astronomy DepartmentUniversity of New MexicoAlbuquerqueUSA
  4. 4.Santa Fe InstituteSanta FeUSA

Personalised recommendations