Skip to main content

Upper and Lower Bounds on Continuous-Time Computation

  • Conference paper
Unconventional Models of Computation, UMC’2K

Abstract

We consider various extensions and modifications of Shannon’s General Purpose Analog Computer, which is a model of computation by differential equations in continuous time. We show that several classical computation classes have natural analog counterparts, including the primitive recursive functions, the elementary functions, the levels of the Grzegorczyk hierarchy, and the arithmetical and analytical hierarchies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Arnold. Equations Differentielles Ordinaires. Editions Mir, 5 èrne edition, 1996.

    Google Scholar 

  2. A. Babakhanian. Exponentials in differentially algebraic extension fields. Duke Math. J., 40:455–458, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  3. [TABLEIMAGES***]

    Google Scholar 

  4. S. Bank:. Some results on analytic and merom orphic solutions of algebraic differential equations. Advances in mathematics, 15:41–62, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Bose, N. Basu and T. Vijayaraghavan. A simple example for a theorem of Vijayaraghavan. J. London Math. Soc., 12:250–252, 1937.

    Google Scholar 

  6. O. Bournez. Achilles and the tortoise climbing up the hyper-arithmetical hierarchy. Theoretical Computer Science, 210 (1):21–71,1999.

    Google Scholar 

  7. O. Bournez. Complexité algorithmique des systemes dynamiques co hybrides. PhD thesis, Ecole Normale Superieure de Lyon, 1999.

    Google Scholar 

  8. M.D. Bowles. U.S. technological enthusiasm and the British technological skepticism in the age of the analog brain. IEEE Annals of the History of Computing, 18(4):5–15, 1996.

    Article  Google Scholar 

  9. M. S. Branicky. Universal computation and other capabilities of hybrid and continuous dynamical systems. Theoretical Computer Science, 138(1), 1995.

    Google Scholar 

  10. A. Ben-Hur, H. Siegelmann, and S. Fishman. A theory of complexity for continuous time systems. To appear in Journal of Complexity.

    Google Scholar 

  11. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: NP-completnes, recursive functions and universal machines. Bull. Amer. Math. Soc., 21:1–46,1989.

    Article  MathSciNet  MATH  Google Scholar 

  12. M.L Campagnolo, C. Moore, and J.F. Costa. Iteration, ineqUalities, and differentiability in analog computers. To appear in Journal of Complexity.

    Google Scholar 

  13. M.L Campagnolo, C. Moore, and J.E Costa. An analog characterization of the subrecursive functions. In P. Kornerup, editor, Proc. of the 4th Conference on Real Numbers and Computers, pages 91–109. Odense University, 2000.

    Google Scholar 

  14. N. J. Cutland. Computability: an introduction to recursive function theory. Cambridge University Press, 1980.

    Google Scholar 

  15. A. Grzegorczyk. Some classes of recursive functions. Rosprawy Matematyzne, 4, 1953. Math. Inst. of the Polish Academy of Sciences.

    Google Scholar 

  16. A. Grzegorczyk. Computable functionals. Fund. Math., 42:168–202,1955.

    MathSciNet  MATH  Google Scholar 

  17. A. Grzegorczyk. On the definition of computable real continuous functions. Fund. Math., 44:61–71, 1957.

    MathSciNet  MATH  Google Scholar 

  18. H.K. Hayman. The growth of solutions of algebraic differential equations. Rend. Mat. Acc. Lincei., 7:67–73,1996.

    MathSciNet  MATH  Google Scholar 

  19. L. Kalmar. Egyzzerü példa eldonthetetlen aritmetikai problémára. Mate és Fizikai Lapok, 50:1–23,1943.

    MathSciNet  MATH  Google Scholar 

  20. P. Koiran, M. Cosnard, and M. Garzon. Computability with low-dimensional dynamical systems. Theoretical Computer Science, 132:113–128,1994.

    Article  MathSciNet  MATH  Google Scholar 

  21. W. Thomson (Lord Kelvin). On an instrument for calculating the integral of the product of two given functions. Proc. Royal Society of London, 24:266–268, 1876.

    MATH  Google Scholar 

  22. P. Koiran and C. Moore. Closed-form analytic maps in one or two dimensions can simulate Turing machines. Theoretical Computer Science, 210:217–223, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Lacombe. Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles I. C. R. Acad. Sci. Paris, 240:2478–2480, 1955.

    MathSciNet  MATH  Google Scholar 

  24. L. Lipshitz and L. A. Rubel. A differentially algebraic replacement theorem, and analog computation. Proceedings of the A.M.S., 99(2):367–372, 1987.

    MathSciNet  MATH  Google Scholar 

  25. K. Meer. Real number models under various sets of operations. Journal of Complexity, 9:366–372, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Moore. Unpredictability and undecidability in dynamical systems. Physical Review Letters, 64:2354–2357, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Moore. Recursion theory on the reals and continuous-time computation. Theoretical Computer Science, 162:23–44,1996.

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Moore. Dynamical recognizers: real-time language recognition by analog computers. Theoretical Computer Science, 201:99–136,1998.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Odifreddi. Classical Recursion Theory. Elsevier, 1989.

    Google Scholar 

  30. P. Orponen. On the computational power of continuous time neural networks. In Proc. SOFSEM’97, the 24th Seminar on Current Trends in Theory and Practice of Informatics, Lecture Notes in Computer Science, pages 86–103. Springer-Verlag, 1997.

    Google Scholar 

  31. P. Orponen. A survey of continuous-time computation theory. In D.-Z. Du and K.-I Ko, editors, Advances in Algorithms, Languages, and Complexity, pages 209–224. Kluwer Academic Publishers, Dordrecht, 1997.

    Chapter  Google Scholar 

  32. M. B. Pour-El. Abtract computability and its relation to the general purpose analog computer. Trans. Amer. Math. Soc., 199:1–28, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Springer-Verlag, 1989.

    MATH  Google Scholar 

  34. H. E. Rose. Subrecursion: functions and hierarchies. Clarendon Press, 1984.

    Google Scholar 

  35. L. A. Rubel. Digital simulation of analog computation and Church’s thesis. The Journal of Symbolic Logic, 54(3): 1011–1017, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  36. L. A. Rubel. A survey of transcendentally transcendental functions. Amer. Math. Monthly, 96:777–788, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  37. H. T. Siegelmann and S. Fishman. Analog computation with dynamical systems. Physica D, 120:214–235,1998.

    Article  MATH  Google Scholar 

  38. C. Shannon. Mathematical theory of the differential analyser. J. Math. Phys. MIT, 20:337–354, 1941.

    MathSciNet  MATH  Google Scholar 

  39. H. Siegelmann. Neural Netwoks and Analog Computation: Beyond the Turing Limit. Birkhauser, 1998.

    Google Scholar 

  40. T. Vijayaraghavan. Sur la croissance des fonctions définies par les équations différentielles. C. R. Acad. Sci. Paris, 194:827–829,1932.

    Google Scholar 

  41. A. Vergis, K. Steiglitz, and B. Dickinson. The complexity of analog computation. Mathematics and computers in simulation, 28:91–113, 1986.

    Article  MATH  Google Scholar 

  42. Q. Zhou. Subclasses of computable real functions. In T. Jiang and D. T. Lee, editors, Computing and Combinatorics, Lecture Notes in Computer Science, pages 156–165. Springer-Verlag, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this paper

Cite this paper

Campagnolo, M.L., Moore, C. (2001). Upper and Lower Bounds on Continuous-Time Computation. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds) Unconventional Models of Computation, UMC’2K. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0313-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0313-4_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-415-4

  • Online ISBN: 978-1-4471-0313-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics