Skip to main content

Model-Based Interactive TV: Scene Capture and Transmission Density Distribution Functions for Bandwidth Reduction

  • Chapter
Digital Content Creation

Abstract

In this chapter a study is presented on the use of density distribution function models of objects for“model based interactive TV transmission”over the Internet.One of the aims of this process is bandwidth reduction for transmitting curved surface models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.L. Bajaj, F. Bernardini and G. Xu, Automatic reconstruction of surfaces, and scalar fields from 3D scans. Computer Graphics Proceedings, 109–118, 1995.

    Google Scholar 

  2. E. Bittar, Nicholas Tsingos, and Marie-Paule Gascuel Automatic reconstruction of unstructured 3D data: combining medial axis and implicit surfaces. Eurographics, September 1995.

    Google Scholar 

  3. J.F. Blinn, A generalisation of algebraic surface drawing. ACM Transactions on Graphics, 1(3): 235–256, 1982.

    Article  Google Scholar 

  4. Brian Curless and Marc Levoy, A volumetric method for building complex models from range images. Computer Graphics Proceedings, 303–312, 1996.

    Google Scholar 

  5. Matthias Eck and Hughes Hoppe, Automatic reconstruction of B-spline surfaces of arbitrary topological type. Computer Graphics Proceedings, 325–334, 1996.

    Google Scholar 

  6. E. Ferley, Marie-Paule Gascuel and Dominique Attali, Skeletal reconstruction of branching shapes. In Implicit Surfaces 96: 2nd International Workshop on Implicit Surfaces, Eindhoven, The Netherlands, October.

    Google Scholar 

  7. A.V. Garcia-Serrano, D. Acosta and A.L. Thomas, Density distribution function model extraction from 3D data. In Eurographics UK 17th Annual Conference Proceedings, Cambridge, UK, April.

    Google Scholar 

  8. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuctzle, Surface reconstruction from unorganized points. Computer Graphics, 26(2): 71–78, 1992.

    Article  Google Scholar 

  9. H. Hoppe, T. DeRose. T. Duchamp, J. McDonald and W. Stuetzle, Mesh optimisation. Computer Graphics Proceedings, 19–26, 1993.

    Google Scholar 

  10. Horn, B.K.P., Obtaining shape from shading information. In The Psychology of Computer Vision (ed. Winston, P.H). New York: McGraw-Hill, pp. 115–155, 1975.

    Google Scholar 

  11. Daniel Keren, David Cooper and Jayashree Subrabmoma, Describing complicated objects by implicit polynomials. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(1): 38–53, 1994.

    Article  Google Scholar 

  12. Venkat Krishnamurthy and Marc Levoy, Fitting smooth surfaces to dense polygon meshes. Computer Graphics Proceedings, 313–324, 1996.

    Google Scholar 

  13. Lavington, M.J., Automatic data entry for simple volume models. B.Sc. Final Year Project Dissertation, School of Engineering and Applied Sciences, University of Sussex, Brighton, 1986.

    Google Scholar 

  14. Lim, A.W.T., Exploring vision mechanisms for constructing a CAD reconstruction and recognition system. D.Phil. Thesis, University of Sussex, 1997.

    Google Scholar 

  15. William E. Lorensen and Harvey E. Cline, Marching cubes: a high resolution 3D surface construction algorithm. Computer Graphics, 21(4): 163–169, 1987.

    Article  Google Scholar 

  16. H. Luga, R. Pelle, A. Berro and Y. Duthen, Extended algebraic surface generation for volume modelling: an approach through genetic algorithms. In International Conference on Visualisation and Modelling, Leeds, UK, December 1995.

    Google Scholar 

  17. J.V. Miller, D.E. Breen, W.E. Lorensen, R.M. O’Hara and M.J. Wozny, Geometrically deformed models: a method for extracting closed geometric models from volume data. Computer Graphics, 25(4): 217–226, 1991.

    Article  Google Scholar 

  18. Shigeru Muraki (1991) Volumetric shape description of range data using blobby models. Computer Graphics, 25(4): 227–235, 1991.

    Article  Google Scholar 

  19. H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shirakawa and K. Omura, Object modelling by distribution function and a method of image generation. Transactions of the Institute of Electronics and Communications Engineers of Japan, J68-D(4): 718–725.

    Google Scholar 

  20. Stan Sclar and Alex Pentland, Generalized implicit functions for computer graphics. Computer Graphics, 25(4): 247–250.

    Google Scholar 

  21. Hoylen Sue, Implicit models for computer animation. Ph.D. Thesis, University of Sussex, 1995.

    Google Scholar 

  22. Gabriel Taubin, Fernando Cukierman, Steven Sullivan, Jean Ponce and David J. Kriegman. Parameterized families of polynomials for bounded algebraic curve and surface fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(3): 287–303, 1994.

    Article  MATH  Google Scholar 

  23. Demetri Terzopoulos and Dimitri Metaxas, Dynamic 3D models with local and global deformations: Deformable superquadratics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7): 703–714, 1988.

    Article  Google Scholar 

  24. Demetri Terzopoulos, Andrew Witkin and Michael Kass, Constraints on deformable models: Recovering 3D shape and non-rigid motion. Artificial Intelligence, 36: 91–123, 1988.

    Article  MATH  Google Scholar 

  25. A.L. Thomas, OBLIX: a two and three dimensional mapping program for use with line plotters. Abstracts, Laboratory for Computer Graphics and Spatial Analysis, Graduate School of Design, Harvard University, V50, 1969.

    Google Scholar 

  26. A.L. Thomas, Spatial models in computer based information systems. Ph.D. Dissertation, Edinburgh University, April 1976.

    Google Scholar 

  27. A.L. Thomas, Geometric modelling and display primitives, towards special purpose hardware, SIGGRAPH ’83, Detroit, 1983, pp. 299–310.

    Google Scholar 

  28. A.L. Thomas, Speculation on virtual surfaces in machine vision systems. Irish Machine Vision and Image Processing Conference and Eightth Ireland Conference on Artificial Intelligence. School of Information and Software Engineering, Magee College, University of Ulster, 10–13 September 1997, pp. 10–13.

    Google Scholar 

  29. A.L. Thomas, Scene capture and modeling for three dimensional interactive stereo television broadcasting. In Digital Convergence: The Information Revolution (eds. John Vince and Rae Earnshaw). London: Springer-Verlag, 1999.

    Google Scholar 

  30. N. Tsingos, E. Bittar and Marie-Paule Gascuel, Implicit surfaces for semi-automatic medical organ reconstruction. Computer Graphics International Conference: Introduction to Modelling and Animation using Implicit Surfaces, Leeds, UK, June 1995.

    Google Scholar 

  31. G. Wyvill, G. McPheeters and B. Wyvill, Data structures for soft objects. The Visual Computer, 2(4): 227–234, 1986.

    Article  Google Scholar 

  32. S. Zhang, Construction and visualisation of free-form surfaces. Ph.D. Thesis, University of Sussex, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this chapter

Cite this chapter

Serrano, A.G., Sue, H., Thomas, A.L., Wei, H. (2001). Model-Based Interactive TV: Scene Capture and Transmission Density Distribution Functions for Bandwidth Reduction. In: Earnshaw, R., Vince, J. (eds) Digital Content Creation. Springer, London. https://doi.org/10.1007/978-1-4471-0293-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0293-9_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1079-8

  • Online ISBN: 978-1-4471-0293-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics