Skip to main content

Implementation of a Class of Low Complexity, Low Sensitivity Digital Controllers Using Adaptive Fixed-Point Arithmetic

  • Chapter
Digital Controller Implementation and Fragility

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

The performance of a real time implementation of a digital control algorithm especially under a high sampling rate is affected by arithmetic errors caused by finite word-length arithmetic. The effects of these numerically induced errors can be measured both in terms of the sensitivity of the closed-loop performance due to changes in the coefficients of the control algorithm, and the effect of internal “noise” resulting from roundoff errors on the controller states. The least sensitive structures generally have the highest complexity in terms of the number of arithmetic operations required to compute the next controller output, while the most sensitive structures are often the least complex. A new class of low complexity algorithms is presented, which have only moderate complexity. In addition, it is shown how a software modification can eliminate the occurrence of internal arithmetic overflow, which are usually present in a conventional fixed-point implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Fettweis, “Pseudopassivity, sensitivity, and stability of wave digital filters”IEEE Trans. on Circuits Theoryvol. CT-19, pp. 668–673, Nov. 1972.

    Article  Google Scholar 

  2. R.E. Crochiere, “A new statistical approach to the coefficient wordlength problem for digital filters”IEEE Trans. on Circuits E Syst.vol. CAS-22, pp. 190–196, Mar. 1975.

    Article  Google Scholar 

  3. A.G. Agarwal and C.S. Burrus, “New recursive digital filter structures having very low sensitivity and roundoff noise”IEEE Trans. on Circuits & Syst.vol. CAS-22, pp. 921–927, Dec. 1975.

    Article  Google Scholar 

  4. C.T. Mullis and R.A. Roberts, “Synthesis of minimum roundoff noise fixed point digital filters”IEEE Trans. on Circuits & Syst.vol. CAS-23, pp. 551–562, Sept. 1976.

    Article  MathSciNet  MATH  Google Scholar 

  5. D.C. Munson, Jr. and B. Liu, “Narrow-band recursive filters with error spectrum shaping”IEEE Trans. on Circuits & Syst.vol. CAS-28, pp. 160–163, Feb. 1981.

    Article  MathSciNet  Google Scholar 

  6. G. Orlandi and G. Martinelli, “Low-sensitivity recursive digital filter structures having very low sensitivity and roundoff noise”IEEE Trans. Circuits f4 Syst.vol. CAS-31, pp. 654–656, July 1984.

    Article  Google Scholar 

  7. D. Williamson and S. Sridharan, “An approach to coefficient wordlength reduction in digital filters”IEEE Trans. on Circuits υ Syst.vol. CAS-32, no. 9, pp. 893–903, Sept. 1985.

    Article  Google Scholar 

  8. D. Williamson, “Finite wordlength design of digital Kalman filters for state estimation”IEEE Trans. on Auto. Controlvol. AC-30, no. 10, pp. 930–939, Oct. 1985.

    Article  MATH  Google Scholar 

  9. L. Thiele, “On the sensitivity of linear state space systems”IEEE Trans. on Circuits ee Syst.vol. CAS-33, pp. 502–510, May 1986.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Sridharan and D. Williamson, “Implementation of high order direct form digital filter structures”IEEE Trans. on Circuits & Syst., vol. CAS-32, pp. 816–822, Aug. 1986.

    Google Scholar 

  11. D. Williamson, “Roundoff noise minimization and pole-zero sensitivity in fixed-point digital filters using residue feedback”IEEE Trans. on Acoustics Speech ei Sig. Proc.vol. ASSP-34, pp. 1210–1220, Oct. 1986.

    Article  Google Scholar 

  12. D. Williamson, “Delay replacement in direct form structures”IEEE Trans. on Acoustics Speech υ Sig. Proc.vol. ASSP-36, pp. 453–460, April 1988.

    Article  MATH  Google Scholar 

  13. D. Williamson and K. Kadiman, “Optimal finite wordlength linear quadratic regulation”IEEE Trans. on Auto. Controlvol. AC-34, no. 12, pp. 1218–1228, Dec 1989.

    Article  MathSciNet  MATH  Google Scholar 

  14. R.H. Middleton and G.C. GoodwinDigital Control and Estimation - A Unified ApproachPrentice-Hall, Englewood Cliffs, NJ, 1990.

    Google Scholar 

  15. D. WilliamsonDigital Control and ImplementationPrentice-Hall, Englewood Cliffs, NJ, 1991.

    Google Scholar 

  16. G.C. Goodwin, R.H. Middleton and H.V. Poor, “High speed digital signal processing and control”Proc. IEEE vol. 80, pp. 240–259, Feb. 1992.

    Article  Google Scholar 

  17. K. Liu, R. Skelton and K. Grigoriadis, “Optimal controllers for finite wordlength implementation,”IEEE Trans. on Auto. Controlvol. AC-37, no. 9, pp. 1294–1304, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Gevers and G. LiParametrizations in Control Estimation and Filtering Problems: Accuracy AspectsSpringer-Verlag, Berlin, 1993.

    Book  MATH  Google Scholar 

  19. D. Williamson, “Sensitivity improvements using Q-operator representations”Proc. 32nd IEEE Conf. Decision and Contr., San Antonio, TX. Dec. 1993.

    Google Scholar 

  20. M.A. Rotea and D. Williamson, “Optimal realizations of finite wordlength digital filters and controllers”IEEE Trans. on Circuits e.4 Syst.vol. CAS-42, pp. 61–72, Feb. 1995.

    Article  MATH  Google Scholar 

  21. Bhaskar D. Rao, “Roundoff noise in floating point digital filters”Control and Dynamic Systemsvol. 75, pp. 79–103, 1996.

    Article  Google Scholar 

  22. D. WilliamsonDiscrete Time Signal ProcessingSpringer, London, 1999.

    Book  MATH  Google Scholar 

  23. A.D. Back, B.G. Horne and A. H. Tsoi, “Alternate discrete-time operators: an algorithm for optimal selection of parameters”IEEE Trans. on Signal Processingvol. 47, pp. 2612–2615, Sept. 1999.

    Article  Google Scholar 

  24. K.R. Raley and P.H. Bauer, “Realization of block floating point digital filters and applications to block implementations”IEEE Trans. on Signal Processingvol. 47, pp. 1076–1086, Sept. 1999.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this chapter

Cite this chapter

Williamson, D. (2001). Implementation of a Class of Low Complexity, Low Sensitivity Digital Controllers Using Adaptive Fixed-Point Arithmetic. In: Istepanian, R.S.H., Whidborne, J.F. (eds) Digital Controller Implementation and Fragility. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-0265-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0265-6_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1082-8

  • Online ISBN: 978-1-4471-0265-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics