Skip to main content

Robust Non-Fragile Controller Design for Discrete Time Systems with FWL Consideration

  • Chapter
Digital Controller Implementation and Fragility

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

This chapter is concerned with the problem of robust non-fragile ℌ2 controller design for linear time-invariant discrete time systems with uncertainty. The controller to be designed is assumed to have additive gain variations or multiplicative gain variations, which are due to the finite word-length (FWL) effects when the controller is implemented. Sufficient conditions for the robust non-fragile control problem are given in terms of solutions to a set of matrix inequalities. The resulting design is such that the closed-loop system is robustly stable and has an ℌ2 cost bound against plant uncertainty and controller gain variations. Iterative linear matrix inequalities (LMI) based algorithms are developed. Numerical examples are given to illustrate the design methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, J.Sampled-Data Control SystemsSpringer-Verlag: Berlin, 1985.

    Book  Google Scholar 

  2. Astrom, K.J. and B. WittenmarkComputer Controlled SystemsPrentice Hall: Upper Saddle River, N.J., 1997.

    Google Scholar 

  3. Basar, T. and P. BernhardH.-Optimal Control and Related Minimax Design Problems: A Dynamic Game ApproachBirkhauser: Boston, Massachusetts, 1991.

    Google Scholar 

  4. Blanchini, F., R.Lo Cigno and R. Tempo, “Control of ATM networks• fragility and robustness issues”Proc. American Control ConferencePhiladephia, Pennsylvania, pp. 2947–2851, 1998.

    Google Scholar 

  5. Boyd, S., L. El Ghaoui, E. Feron and V. BalakrishanLinear Matrix Inequalitiesin Systems and Control Theory,SIAM: Philadelphia, PA, 1994.

    Book  Google Scholar 

  6. Corrado, J.R. and W.M. Haddad, “Static output feedback controllers for systems with parametric uncertainty and controller gain variation”Proc.American Control Conference, San Diego, California, pp. 915–919, 1999.

    Google Scholar 

  7. Dorato, P., “Non-fragile controller design, an overview”Proc. American Control ConferencePhiladephia, Pennsylvania, pp. 2829–2831, 1998.

    Google Scholar 

  8. Doyle, J.C., K. Glover, P.P. Khargonekar and B.A. Francis, “State space solutions to standard H2 andH oe control problems,“IEEE Trans. Automatic Contr., Vol. 34, no. 8, pp. 831–847, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  9. El Ghaoui, L., F. Oustry, and M. AitRami, “A cone complementarity linearization algorithm for static output feedback and related problems,”IEEE Trans. Automatic Contr.Vol. 42, no. 8, pp. 1171–1176, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  10. Famularo, D., C.T. Abdallah, A. Jadbabais, P. Dorato, and W.M. Haddad, “Robust non-fragile LQ controllers: the static state feedback case”Proc.American Control Conference, Philadephia, Pennsylvania, pp. 1109–1113, 1998.

    Google Scholar 

  11. Gahinet, P., A. Nemirovski, A.J. Laub, and M. Chilali, LMI Control Toolbox, Natick, MA: The MathWorks, 1995.

    Google Scholar 

  12. Gevers, M. and G. LiParametrization in Control Estimation and Filtering Problem: Accuracy AspectsSpringer-Verlag: Berlin, 1993.

    Book  Google Scholar 

  13. Green, M. and D.J.N. LimebeerLinear Robust ControlPrentice-Hall: Englewood Cliffs, New Jersey, 1995.

    Google Scholar 

  14. Haddad, W.M. and J.R. Corrado, “Resilient controller design via quadratic Lyapunov bounds”Proc. IEEE Conf. Dec. Contr.San Diego, CA, pp. 2678–2683, 1997.

    Google Scholar 

  15. Haddad, W.M. and J.R. Corrado, “Robust resilient dynamic controllers for systems with parametric uncertainty and controller gain variations”Proc. American Control ConferencePhiladephia, Pennsylvania, pp. 2837–2841, 1998.

    Google Scholar 

  16. Jadbabaie, A., T. Chaouki, D. Famularo, and P. Dorato, “Robust, non-fragile and optimal controller design via linear matrix inequalities”Proc. American Control ConferencePhiladephia, Pennsylvania, pp. 2842–2846, 1998.

    Google Scholar 

  17. Kaesbauer, D. and J. Ackermann, “How to escape from the fragility trap”Proc. American Control ConferencePhiladephia, Pennsylvania, pp. 2832–2836, 1998.

    Google Scholar 

  18. Keel, L.H. and S.P. Bhattacharyya, “Stability margins and digital implementation of controllers”Proc.American Control Conference, Philadephia, Pennsylvania, pp. 2852–2856, 1998.

    Google Scholar 

  19. Keel, L.H. and S.P. Bhattacharyya, “Robust, fragile, or optimal?”IEEE Trans. Automatic Contr.Vol. 42, no. 8, pp. 1098–1105, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  20. Keel, L.H. and S.P. Bhattacharyya, “Authors’ Reply to Comments on ”Robust, Fragile, or Optimal?“IEEE Trans. Automatic Contr.Vol. 43, no. 9, pp. 1268, 1998.

    Article  MathSciNet  Google Scholar 

  21. Li, G., “On the structure of digital controllers with finite word length consideration”IEEE Trans. Automatic Contr.Vol. 43, pp. 689–693, 1998.

    Article  MATH  Google Scholar 

  22. Makila P.M., “Comments on ”Robust, Fragile, or Optimal?“IEEE Trans. Automatic Contr.Vol. 43, no. 9, pp. 1265–1268, 1998.

    Article  MathSciNet  Google Scholar 

  23. Masubuchi, I., A. Ohara and N. Suda, “LMI-based controller synthesis: a unified formulation and solution”Int. J. Robust Nonlinear Controlvol. 8, pp. 669–686, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  24. Whidborne, J. F., J. Wu and R. S. H. Istepanian, “Finite word length stability issues in an ti framework”Int. J. Controlvol. 73, no. 2, pp. 166–176, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang, G.-H., J.L. Wang, and C. Lin“H oo control for linear systmes with additive controller gain variations“Int. J. Control, vol. 73, no. 16, pp. 1500–1506, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, G.-H. and J.L. Wang, “Robust non-fragile Kalman filtering for uncertain linear systems with estimator gain uncertainty”IEEE Trans. Automatic Contr.Vol. 46, no. 2, pp. 343–348, 2001.

    Article  MATH  Google Scholar 

  27. Yang, G.-H. and J.L. Wang, “Non-fragileH 0 control for linear systems with multiplicative controller gain variations“AutomaticaVol. 37; no. 5; pp. 727–737, 2001.

    MATH  Google Scholar 

  28. Zhou, K., J.C. Doyle, and K. GloverRobust Optimal ControlPrentice Hall: Englewood Cliffs, NJ, 1996.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this chapter

Cite this chapter

Yang, GH., Wang, J.L., Soh, Y.C. (2001). Robust Non-Fragile Controller Design for Discrete Time Systems with FWL Consideration. In: Istepanian, R.S.H., Whidborne, J.F. (eds) Digital Controller Implementation and Fragility. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-0265-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0265-6_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1082-8

  • Online ISBN: 978-1-4471-0265-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics