Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 254 Accesses

Abstract

One of the fundamental problems in feedback control design is the ability of the control system to maintain stability and performance in the face of system uncertainties. To this end, elegant multivariable robust control design frameworks such as ℋ control, ℑ control, and μ synthesis have been developed to address the robust stability and performance control problem. An implicit assumption inherent in these design frameworks is that the controller will be implemented exactly. In a recent paper by Keel and Bhattacharyya, it was shown that even though such frameworks are robust with respect to system uncertainty, they are extremely fragile with respect to errors in the controller coefficients. In this chapter, we extend the robust fixed-structure controller synthesis approach to develop controllers which are robust to system uncertainties and non-fragile or resilient to controller gain variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Dorato and R. K. Yedavalli, Eds., Recent Advances in Robust Control. IEEE Press, 1990.

    Google Scholar 

  2. M. Vidyasagar, Control System Synthesis. Cambridge, MA: The MIT Press, 1985.

    MATH  Google Scholar 

  3. B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods. Englewood Cliffs, NJ: Prentice-Hall, 1990.

    Google Scholar 

  4. B. A. Francis, A Course in 91ß Control Theory. New York: Springer-Verlag, 1987.

    Book  Google Scholar 

  5. K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. Englewood Cliffs, NJ: Prentice-Hall, 1996.

    Google Scholar 

  6. M. A. Dahleh and I. J. Diaz-Bobillo, Control of Uncertain Systems: A Linear Programming Approach. Englewood Cliffs, NJ: Prentice-Hall, 1995.

    Google Scholar 

  7. D. S. Bernstein and D. C. Hyland, “Optimal projection approach to robust, fixed-structure control design,” in Mechanics and Control of Space Structures (J. Junkins, ed.), pp. 237–293, AIAA, Washington, D.C., 1993.

    Google Scholar 

  8. L. H. Keel and S. P. Bhattacharyya, “Robust, fragile, or optimal?,” IEEE Trans. Autom. Contr., vol. 42, pp. 1098–1105, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. S. Bernstein and W. M. Haddad, “The optimal projection equations with Petersen-Hollot bounds: Robust stability and performance via fixed-order dynamic compensation for systems with structured real-valued parameter uncertainty,” IEEE Trans. Autom. Contr., vol. 33, pp. 578–582, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. S. Bernstein and W. M. Haddad, “Robust stability and performance via fixed-order dynamic compensation with guaranteed cost bounds,” Math. Contr. Sig. Sys., vol. 3, pp. 139–163, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. M. Haddad and D. S. Bernstein, “Parameter-dependent Lyapunov functions and the Popov criterion in robust analysis and synthesis,” IEEE Trans. Autom. Contr., vol. 40, pp. 536–543, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  12. W. M. Wonham, Linear Multivariable Control: A Geometric Approach. New York: Springer-Verlag, 2nd ed., 1979.

    Chapter  Google Scholar 

  13. D. S. Bernstein, W. M. Haddad, and C. N. Nett, “Minimal complexity control law synthesis, part 2: Problem solution via 9–120L. optimal static output feedback,” in Proc. Amer. Contr. Conf., (Pittsburgh, PA), pp. 2506–2511, June 1989.

    Google Scholar 

  14. R. S. Erwin, A. G. Sparks, and D. S. Bernstein, “Decentralized real structured singular value synthesis,” in Proc. 13th IFAC World Congress, vol. C: Control Design I, (San Francisco, CA), pp. 79–84, July 1996.

    Google Scholar 

  15. J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.

    Google Scholar 

  16. J. C. Doyle, “Guaranteed margins for LQG regulators,” IEEE Trans. Autom. Contr., vol. 23, pp. 756–757, 1978.

    Article  Google Scholar 

  17. B. Wei and D. S. Bernstein, “Benchmark problems for robust control design,” AIAA J. Guid. Contr. Dyn., vol. 15, pp. 1057–1059, 1992.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this chapter

Cite this chapter

Haddad, W.M., Corrado, J.R. (2001). Robust Resilient Controller Design. In: Istepanian, R.S.H., Whidborne, J.F. (eds) Digital Controller Implementation and Fragility. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-0265-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0265-6_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1082-8

  • Online ISBN: 978-1-4471-0265-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics