Skip to main content

Bayesian Inference of Calibration Curves: Application to Archaeomagnetism

  • Chapter
Tools for Constructing Chronologies

Part of the book series: Lecture Notes in Statistics ((LNS,volume 177))

Summary

This chapter focuses on recently developed models for the analysis and interpretation of archaeomagnetic dating evidence. Archaeomagnetic data from archaeological structures such as hearths, kilns or sets of bricks and tiles, exhibit considerable experimental errors and are typically also associated with date estimates from other sources such as stratigraphic sequences, historical records or chronometric methods. This chapter summarizes the technical aspects of recent Bayesian statistical modelling work, describing a hierarchical model for the archaeomagnetic data and its uncertainties and combining this with models of the other dating evidence, based on those described by Buck (Chapter 1), to create a calibration curve for future archaeomagnetic dating work in a locality. The proposed model and inference methods are illustrated by the const ruction of a calibration curve using recently published archaeomagnetic data from Lübeck, Germany. With this new posterior estimate of the curve available, it is then possible to use the Bayesian statistical framework to estimate the calendar dates of undated archaeological features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandrescu, M., Courtillot, V. and Mouël, J.-L. L. (1996). Geomagnetic field direction in Paris since the mid-sixteenth century. Phys ics of the Earth and Planetary Interiors, 98, 321–360.

    Article  Google Scholar 

  • Batt, C. M. (1997). The British archaeomagnet ic calibrat ion curve: an objective treatment. Archaeom etry, 39, 163–168.

    Google Scholar 

  • Boothby, W. M. (1975). An in troduction to differentiable manifolds and Riemanniangeom etry. Academic Pr ess, New York.

    Google Scholar 

  • Bronk Ramsey, C. (1995). Radio carbon calibration and analysis of stratigraphy:the OxCal program. Radio carbon, 37,425–430.

    Google Scholar 

  • Bronk Ramsey, C. (1998). The role of stat ist ical methods in the interpretation of radiocarbon dat es. In J. Evin, C. Oberlin, J. P. Daugas and J. F.Salles (eds.), 14 C et archeoloqie: Seme cotiqte s intern ational, Lyon, 6–10 avril 1998. Memoires de la Societe Prehistorique Fran caise Tome XXVI et Supplement 1999 de la Revue d’Archeornetrie, 83–86.

    Google Scholar 

  • Buck, C. E., Cavanag h, W. G. and Lit ton, C. D. (1996). Bayesian approach to interpreting archaeological data. John Wiley, Chichester.

    Google Scholar 

  • Buck, C. E., Chri sten, J. A. and James, G. N. (1999). BCal: an on-line Bayesian radiocarb on calibra tion tool. Internet Archaeology, 7.URL http://intarch.ac.uk/journal/issue7/buck/

  • Buck, C. E., Kenworthy, J. B., Litton, C. D. and Smith, A. F. M. (1991). Combiningarchaeological and radiocarbon informati on: a Bayesian approach to calibration. Antiquity, 65, 808–821.

    Google Scholar 

  • Buck, C. E., Lit ton, C. D. and Shennan, S. J. (1994). A case study in combiningradiocarbon and archaeological information: the early Bronze Age settlement of St. Veit -Klinglberg, Land Salzburg, Austria. Germania, 72,427–447.

    Google Scholar 

  • Buck, C. E., Litton, C. D. and Smith, A. F. M. (1992). Calibration of radiocarbon results pertaining to related archaeological events. Journal of Archaeological Science, 19, 497–512.

    Article  Google Scholar 

  • Bucur, 1. (1994). The direction of the terrestrial magnetic field in Franceduring the last 21 centuries. Recent progress. Physics of the Earth and Planetary Interiors, 87, 95–109.

    Article  Google Scholar 

  • Chauvin, A., Garcia, Y., Lanos, P. and Laubenheimer, F. (2000). Palaeointensity of the geomagnetic field recovered on archaeomagnetic sites from France. Physics of the Earth and Planetary Interiors, 120, 111–136.

    Article  Google Scholar 

  • Dehling, H. and van der Plicht, J. (1993). Statistical problems in calibrating radiocarbon dates. Radiocarbon, 35, 239–244.

    Google Scholar 

  • Fisher, R. A. (1953). Dispersion on a sphere. Proceedings of Royal Society Series A, 217, 295.

    Article  MATH  Google Scholar 

  • Gallet, Y, Genevey, A. and Le Goff, M. (2002). Three millennia of directional variation of the Earth’s magnetic field in western Europe as revealed by archaeological artefacts. Physics of the Earth and Planetary Interiors, 131,81–89.

    Article  Google Scholar 

  • Gilks, W., Richardson, S. and Spiegelhalter, D. (eds.) (1996). Markov chain Monte Carlo in practice. Chapman and Hall, London.

    MATH  Google Scholar 

  • Good, 1. J. and Gaskins, R. A. (1971). Nonparametric roughness penalties for probability densities. Biometrika, 58, 255–277.

    MathSciNet  Google Scholar 

  • Good, 1. J. and Gaskins, R. A. (1980). Density estimation and bump-hunting by the penalized maximum likelihood method exemplified by scattering and meteorite data. Journal of the American Statistical Association, 75,42–73.

    Article  MathSciNet  Google Scholar 

  • Green, P. J. and Silverman, B. W. (1994). Nonparametric regression and generalized linear models, a roughness penalty approach. Chapman and Hall, London.

    MATH  Google Scholar 

  • Jupp, P. E. and Kent, J. T. (1987). Fitting smooth paths to spherical data.Applied Statistics, 36, 34–46.

    Google Scholar 

  • Kovacheva, M. (1997). Archaeomagnetic database from Bulgaria: the last 8000 years. Physics of the Earth and Planetary Interiors, 102, 145–151.

    Article  Google Scholar 

  • Kovacheva, M., Jordanova, N. and Karloukovski, V. (1998). Geomagnetic field variations as determined from Bulgarian archaeomagnetic data. Part II: The last 8000 years. Surveys in Geophysics, 19,431–460.

    Article  Google Scholar 

  • Kovacheva, M. and Toshkov, A. (1994). Geomagnetic field variations as determined from Bulgarian archaeomagnetic data. Part I: The last 2000 years AD. Surveys in Geophysics, 15,673–701.

    Article  Google Scholar 

  • Lanos, P. (2001). L’approche bayesienne en chronometrie: application a l’archeornagnetisme. In J. N. Barrandon, P. Guibert and V. Michel(eds.), Datation, XXIe rencontres internationales d’archeologie et d’histoire d’Antibes. APDCA, Antibes, 113–139.

    Google Scholar 

  • Lanos, P., Kovacheva, M. and Chauvin, A. (1999). Archaeomagnetism,methodology and applications: implementation and practice of the archaeomagnetic method in France and Bulgaria. European Journal of Archaeology,2,365–392.

    Article  Google Scholar 

  • Lanos, P., Le Goff, M., Kovacheva, M. and Schnepp, E. (submitted). Archaeomagnetic reference curves, part I: errors from sampling to databases and curve estimation by moving average technique. Geophysical Journal International.

    Google Scholar 

  • Le Goff, M., Gallet, Y., Genevey, A. and Warrné, N. (2002). On archaeomagnetic secular variation curves and archaeomagnetic dating. Physics of the Earth and Planetary Interiors, 134, 203–211.

    Article  Google Scholar 

  • Love, J. J. and Constable, C. G. (2003). Gaussian statistics for paleomagnetic vectors. Geophysical Journal International, 152, 515–565.

    Article  Google Scholar 

  • Mardia, K. V. (1972). Statistics of directional data. Probability and Mathematical Statistics Series. Academic Press, London.

    Google Scholar 

  • Marton, P. (1996). Archaeomagnetic directions: the Hungarian calibration curve. In A. Morris and D. Tarling (eds.), Palaeomagnetism and tectonics of the Mediterranean region, Geological Society Special Publication, vol.105, 385–399.

    Google Scholar 

  • McFadden, P. L. and McElhinny, M. (1990). Classification of the reversal test in palaeomagnetism. Geophysical Journal International, 103, 725–729.

    Article  Google Scholar 

  • Michczynska, D. J., Pazdur, M. F. and Walanus, A. (1990). Bayesian approach to probabilistic calibration of radiocarbon ages. In W. G. Mook and H. T. Waterbolk (eds.), 14C and archaeology: proceedings of the second international symposium, Groningen 1987. PACT, Strasbourg, Journal of the European Study Group on Physical, Chemical and Mathematical Techniques Applied to Archaeology, Council of Europe, 29, 69–79.

    Google Scholar 

  • Müller, U. (1992). Eine gewerbliche Bäckerei in Lübeck vom 13. bis zum 20.Jahrhundert. Ergebnisse der Grabung Mühlenstralse. Lübecker Schriften zur Archäologie und Kulturgeschichte, 22, 123–143.

    Google Scholar 

  • Orton, C. (1980). Mathematics in archaeology. Collins, London.

    Google Scholar 

  • Pazdur, M. F. and Michczynska, D. J. (1980). Improvement of the procedure for probabilistic calibration of radiocarbon dates. Radiocarbon, 31, 824–832.

    Google Scholar 

  • Schnepp, E. and Pucher, R. (1998). Preliminary archaeomagnetic results from a floor sequence of a bread kiln in Lubeck (Germany). Studia geophysica et geodaetica, 42, 1–11.

    Article  Google Scholar 

  • Schnepp, E., Pucher, R., Goedicke, C., Manzano, A., Muller, U. and Lanos,P. (2003). Paleomagnetic directions and thermoluminescence dating from a bread oven-floor sequence in Lubeck (Germany): a record of 450 years of geomagnetic secular variation. Journal of Geophysical Research, 108,53–66.URL http://www.agu.org

    Google Scholar 

  • Silverman, B. W. (1984). Spline smoothing: the equivalent variable kernel method. The Annals of Statisti cs, 12,898–916.

    Article  MATH  Google Scholar 

  • Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric regr ession curve fitting. Journal of the Royal Statistical Society Series B, 47, 1–52.

    MATH  Google Scholar 

  • Sternberg, R. (1989). Secular variation of the archaeomagnetic direction in the American Southwest, AD 750–1425. Journal of Geophysical Research,94, 527–546.

    Article  Google Scholar 

  • Stuiver, M. and Reimer, P. (1989). Histograms obtained from computerized radiocarbon age calibration. Radiocarbon, 31, 817–823.

    Google Scholar 

  • Tarantola, A. (1987). Inverse problem theory: methods for data fitting and model parameter estimation. Elsevier, Amsterdam.

    MATH  Google Scholar 

  • Tarling, D. (1983). Palaeomagnetism. Chapman and Hall, London.

    Book  Google Scholar 

  • Tassi, P. (1992). Methodes statistiques. Collection Economie et Statistiques avancees. Economica, Paris, second edn.

    Google Scholar 

  • Thellier, E. (1938). Sur l’aimantation des terres cuites et ses applications geophysiques. Annales de l’Institut de Physique du Globe de Paris, 16,157–302.

    Google Scholar 

  • Thellier, E. (1981). Sur la direct ion du champ magnetique terrestre en France durant les deux derniers millenaires. Physics of the Earth and Planetary Int eriors, 24, 89–132.

    Article  Google Scholar 

  • Thellier, E. and Thellier, O. (1959). Sur l’intensite du champ magnetique terrestre dans le passe historique et geologique. Annales de Geophysique,15, 285–376.

    Google Scholar 

  • Tsunakawa, H. (1992). Bayesian approach to smoothing palaeomagnetic data using ABlC. Geophysical Journal International, 108,801–811.

    Article  Google Scholar 

  • Ulrych, T. J., Sacchi, M. D. and Woodbury, A. (1992). A Bayes tour of inversion: a tutorial. Geophysics, 66,55–69.

    Article  Google Scholar 

  • van der Plicht, J. (1993). The Groningen radiocarbon calibration program.Radiocarbon, 35,231–237.

    Google Scholar 

  • van der Plicht, J. and Mook, W. G. (1989). Calibration of radiocarbon ages by computer. Radiocarbon, 31, 805–816.

    Google Scholar 

  • Wahba, G. (1990). Spline models for observational data. Pennsylvania, Society for Industrial and Applied Mathematics, Philadelphia, USA.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London

About this chapter

Cite this chapter

Lanos, P. (2004). Bayesian Inference of Calibration Curves: Application to Archaeomagnetism. In: Buck, C.E., Millard, A.R. (eds) Tools for Constructing Chronologies. Lecture Notes in Statistics, vol 177. Springer, London. https://doi.org/10.1007/978-1-4471-0231-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0231-1_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-763-6

  • Online ISBN: 978-1-4471-0231-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics