Advertisement

A Cortical Architecture for the Binocular Perception of Motion-in-depth

  • Silvio P. Sabatini
  • Fabio Solari
  • Giacomo M. Bisio
Conference paper
Part of the Perspectives in Neural Computing book series (PERSPECT.NEURAL)

Abstract

A model for the generation of cortical cells selective to motion-in-depth is presented. The model relies upon the computation of the total rate of change of the disparity through the combination of the outputs of monocular cortical units characterized by spatiotemporal receptive fields extracting temporal variations of phase information on the left and right retinal images. Each monocular unit of the cortical architecture can be directly compared to the Adelson and Bergen’s motion detector, thus establishing a link between the information contained in the total derivative of the binocular disparity and those hold in the interocular velocity differences. Experimental simulations on stereo sequences evidenced that the model can quantitatively predict motion-in-depth information.

Keywords

Gabor Filter Binocular Disparity Epipolar Line Stereo Image Pair Retinal Disparity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Harris and S. N.J. Watamaniuk. Speed discrimination of Motion-in depth using binocular cues. Vision Research, 35(7):885–896, 1995.CrossRefGoogle Scholar
  2. [2]
    I. Ohzawa, G.C. DeAngelis, and R.D. Freeman. Encoding of binocular disparity by simple cells in the cat’s visual cortex. J. Neurophysiol., 75:1779–1805, 1996.Google Scholar
  3. [3]
    I. Ohzawa, G.C. DeAngelis, and R.D. Freeman. Encoding of binocular disparity by complex cells in the cat’s visual cortex. J. Neurophysiol., 77:2879–2909, 1997.Google Scholar
  4. [4]
    T.D. Sanger. Stereo disparity computation using Gabor filters. Biol. Cybern., 59:405–418, 1988.CrossRefGoogle Scholar
  5. [5]
    D. J. Fleet and A. D. Jepson. Computation of component image velocity from local phase information. International Journal of Computer Vision, 1:77–104, 1990.CrossRefGoogle Scholar
  6. [6]
    G.C. DeAngelis, I. Ohzawa, and R.D. Freeman. Receptive-field dynamics in the central visual pathways. Trends in Neurosci., 18:451–458, 1995.CrossRefGoogle Scholar
  7. [7]
    E.H. Adelson and J.R. Bergen. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Amer., 2:284–321, 1985.CrossRefGoogle Scholar
  8. [8]
    L. Raffo, S.P. Sabatini, G.M. Bo, and G.M. Bisio. Analog VLSI circuits as physical structures for perception in early visual tasks. IEEE Trans. Neural Net., 9(6): 1483–1494, 1998.,CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2002

Authors and Affiliations

  • Silvio P. Sabatini
    • 1
  • Fabio Solari
    • 1
  • Giacomo M. Bisio
    • 1
  1. 1.DIBE, PSPC-GroupUniversity of GenoaItaly

Personalised recommendations