Skip to main content

The Immunology of Sepsis

  • Chapter
Immunology for Surgeons

Abstract

Inflammation is the body’s non-specific reaction to tissue injury; the end result of highly amplified yet tightly controlled, humoral and cellular mechanisms aimed principally at limiting the extent of tissue damage. Localised inflammation is an appropriate protective physiological response often resulting in the elimination of the initiating noxious stimulus and the early restoration of homeostasis. Loss of local control or an exaggerated host reaction can, however, result in a progressive immuno-inflammatory process, the systemic inflammatory response syndrome (SIRS), which, in extreme cases, can lead to organ dysfunction and death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bone RC. Towards and epidemiology and natural history of SIRS (systemic inflammatory response syndrome). JAMA 1992;268:3452–5.

    Google Scholar 

  2. Bone RC, Balk RA, Cerra FB, et al. and the ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Definitions of sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992;101:1644–55.

    Article  CAS  PubMed  Google Scholar 

  3. Sands KE, Bates DW, Lanken PN, et al. for the Academic Medical Center Consortium Sepsis Working Group. Epidemiology of sepsis syndrome in 8 academic medical centres. JAMA 1997;278:234–40.

    CAS  Google Scholar 

  4. Brun-Buisson C, Doyon F, Carlet J, et al. Incidence, risk factors and outcome of severe sepsis and septic shock in adults. JAMA 1995;274:968–674.

    Article  CAS  PubMed  Google Scholar 

  5. Rietschel ET, Kirikac T, Schade FU, et al. The chemical structure of bacterial endotoxin in relation to bioactivity. Immunobiology 1993;187:346–56.

    Article  Google Scholar 

  6. Wright SD, Ramos RA, Tobias et al. CD 14, a receptor for complexes of lipopolysaccharide (LPS) and LPS-binding protein. Science 1990;249:1431–3.

    Article  CAS  PubMed  Google Scholar 

  7. Tracey KJ, Beutler B, Lowry SF, et al. Shock and tissue injury induced by recombinant human cachectin. Science 1986;234:470–4.

    Article  CAS  PubMed  Google Scholar 

  8. Lynn WA, Golenbeck DT. Lipopolysaccharide antagonists. Immunol Today 1992;13:271–6.

    Article  CAS  PubMed  Google Scholar 

  9. Feuerstein G, Hallenbeck JM, Vanatta B, et al. Effects of gram negative endotoxin on levels of corticosterone, TNFα, circulating blood cells and the survival of rats. Circ Shock 1990;30:265–78.

    CAS  PubMed  Google Scholar 

  10. Kuhns DB, Alvord WG, Gallin JI. Increased circulating cytokines, cytokine antagonists and Eselectin after intravenous administration of endotoxin in humans. J Infect Dis 1995;171:145–52.

    Article  CAS  PubMed  Google Scholar 

  11. Suffredini AF, Fromm RE, Parker MM, et al. The cardiovascular response of normal humans to the administration of endotoxin. N Eng J Med 1989;321:280–7.

    Article  CAS  Google Scholar 

  12. Casey LC, Balk RA, Bone RC. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 1993;119:771–8.

    Article  CAS  PubMed  Google Scholar 

  13. Dofferhoff ASM, Born VJJ, de Vries-Hospers HG, et al. Patterns of cytokines, plasma endotoxin, plasminogen activator inhibitor and acute phase proteins during the treatment of severe sepsis in humans. Crit Car Med 1992;20:185–92.

    Article  CAS  Google Scholar 

  14. Shenep JL, Flynn PM, Barrett FF, et al. Serial quanitation of endotoxemia and bacteremia during therapy for gram-negative bacterial sepsis. J Infect Dis 1988;157:565–8.

    Article  CAS  PubMed  Google Scholar 

  15. Danner RL, Elin RJ, Hosseini JM, et al. Endotoxemia in human septic shock. Chest 1991;99:169–75.

    Article  CAS  PubMed  Google Scholar 

  16. Redl H, Schlag G, Bahrami S, Schade U, Ceska M, St_tz P. Plasma neutrophil-activating peptide-1/interleukin-8 and neutrophil elastase in a primate bacteremia model. J Infect Dis 1991;164:383–8.

    Article  CAS  PubMed  Google Scholar 

  17. Schlievert PM. Role of superantigens in human disease. J Infect Dis 1993;167:997–1002.

    Article  CAS  PubMed  Google Scholar 

  18. Lynn WA, Cohen J. Adjunctive therapy for septic shock: a review of experimental approaches. Clin Infect Dis 1995;20:143–58.

    Article  CAS  PubMed  Google Scholar 

  19. Chaudry IH. Sepsis. Lessons learned in the last century and future directions. Arch Surg 1999;134:922–9.

    Article  CAS  PubMed  Google Scholar 

  20. Bone RC. Towards a theory regarding the pathogenesis of the systemic inflammatory response syndrome: what we do and do not know about cytokine regulation. Crit Care Med 1996;24:163–72.

    Article  CAS  PubMed  Google Scholar 

  21. Schein M, Wittmann DH, Holzheimer R, et al. Hypothesis: compartmentalization of cytokines in intraabdominal infection. Surgery 1996:119:694–700.

    Article  CAS  PubMed  Google Scholar 

  22. Mercer-Jones MA, Hadjiminas DJ, Heinzelmann M, et al. Continuous antibiotic treatment for experimental abdominal sepsis: effects on organ inflammatory cytokine expression and neutrophil sequestration. Br J Surg 1998;85:385–9.

    Article  CAS  PubMed  Google Scholar 

  23. Cavaillon JM, Munoz C, Fitting C, et al. Circulating cytokines: the tip of the iceberg? Circ Shock 1992;38:145–52.

    CAS  PubMed  Google Scholar 

  24. Tracey KJ, Cerami A. Tumour necrosis factor: an updated review of its biology. Crit Care Med 1993;21:S415–22.

    Article  CAS  PubMed  Google Scholar 

  25. Wyble CW, Hynes KL, Kuchibhotla J, et al. TNFα and IL-1 upregulate membrane-bound and soluble E-Selectin through a common pathway. J Surg Res 1997;73:107–12.

    Article  CAS  PubMed  Google Scholar 

  26. Bevilacqua MP, Pober JS, Majeau GR, et al. Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterisation and comparison with the actions of interleukin-1. Proc Natl Acad Sci USA 1986;83:4533–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lukacs NW, Strieter RM, Chensue SW, et al. TNF-alpha mediates recruitment of neutrophils and eosinophils during airway inflammation. J Immunol 1995;154:5411–17.

    CAS  PubMed  Google Scholar 

  28. Hesse DG, Tracey KJ, Fong Y, et al. Cytokine appearance in human endotoxemia and primate bacteremia. Surg Gynecol Obstet 1988;166:147–53.

    CAS  PubMed  Google Scholar 

  29. Hadjiminas DJ, McMasters KM, Peyton JC, et al. Tissue tumor necrosis factor mRNA expression following cecal ligation and puncture or intraperitoneal injection of endotoxin. J Surg Res 1994;56:549–55.

    Article  CAS  PubMed  Google Scholar 

  30. Opal SM, Cross AS, Kelly NM, et al. Efficacy of a monoclonal antibody directed against tumor necrosis factor in protecting neutropenic rats from lethal infection with Pseudomonas aeruginosa. J Infect Dis 1990;161:1148–52.

    Article  CAS  PubMed  Google Scholar 

  31. Hinshaw LB, Emerson TE, Taylor FB, et al. Lethal staphylococcus aureus-induced shock in primates: prevention of death with anti-TNF antibody. J Trauma 1992;33:568–73.

    Article  CAS  PubMed  Google Scholar 

  32. Eskandri MK, Bolos G, Miller C, et al. Anti-tumor necrosis factor antibody therapy fails to prevent lethality after cecal ligation and puncture or endotoxemia. J Immunol 1992;148:2724–30.

    Google Scholar 

  33. Windsor ACJ, Mullen PG, Walsh CJ, et al. Delayed tumor necrosis factor α blockade attenuates pulmonary dysfunction and metabolic acidosis associated with experimental gram-negative sepsis. Ann Surg 1994;129:80–9.

    CAS  Google Scholar 

  34. Fong Y, Tracey KJ, Moldawer LL, et al. ANtibodies to cachectin/tumour necrosis factor reduces interleukin-1α and interleukin 6 appearance during lethal bacteremia. J Exp Med 1989;170:1627–33.

    Article  CAS  PubMed  Google Scholar 

  35. Michie HR, Manogue KR, Spriggs DR, et al. Detection of circulating tumour necrosis factor after endotoxin administration. N Eng J Med 1988;318:1481–6.

    Article  CAS  Google Scholar 

  36. Damas P, Canivet J-L, de Groote D, et al. Sepsis and serum cytokine concentrations. Crit Care Med 1997;25:405–12.

    Article  CAS  PubMed  Google Scholar 

  37. Lowry SF, Moldawer LL, Calvano SE. Cytokine markers of the human response to sepsis. In: Vincent J-L ed. Yearbook of intensive care and emergency medicine. Berlin Heidelberg New York: Springer, 1996:14–23.

    Google Scholar 

  38. Martin C, Sauzx P, Mege JL, et al. Prognostic value of serum cytokines in septic shock. Intensive Care Med 1994;20:272–7.

    Article  CAS  PubMed  Google Scholar 

  39. Pinsky MR, Vincent J-L, Deviere J, et al. Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest 1993;103:565–75.

    Article  CAS  PubMed  Google Scholar 

  40. Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood 1991;77:1627–52.

    CAS  PubMed  Google Scholar 

  41. Okusawa S, Gelfand JA, Ikejima T, Connolly RJ, Dinarello CA. Interleukin-1 induces a shock like state in rabbits. Synergism with tumour necrosis factor and the effect of cyclo-oxygenase inhibition. J Clin Invest 1988;81:1162–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Endo S, Inada K, Inoue Y, et al. Two types of septic shock classified by the plasma level of cytokines and endotoxin. Circ Shock 1992;38:264–74.

    CAS  PubMed  Google Scholar 

  43. Shalaby MR, Waage A, Aarden L, Espevik T. Endotoxin, tumour necrosis factor-α and interleukin-1 induce interleukin-6 production in vivo. Clin Immunol Immunopath 1989;53:488–98.

    Article  CAS  Google Scholar 

  44. Schindler R, Mancilla J, Endres S, et al. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1 and tumour necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood 1990;75:40–7.

    CAS  PubMed  Google Scholar 

  45. Hack CE, de Groot ER, Felt-Bersma RJF, et al. Increased plasma levels of interleukin-6 in sepsis. Blood 1989;74:1704–10.

    CAS  PubMed  Google Scholar 

  46. Damas P, Ledoux D, Nys M, et al. Cytokine serum levels during severe sepsis in humans. IL-6 as a marker of severity. Ann Surg 1992;215:356–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Grard C, Bruyns C, Marchant A, et al. Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia. J Exp Med 1993;177:547–50.

    Article  Google Scholar 

  48. Marchant A, Bruyns C, Vandenabeele A, et al. Interleukin-10 control interferon-and tumor necrosis factor production during experimental endotoxemia. Eur J Immunol 1994;24:1167–71.

    Article  CAS  PubMed  Google Scholar 

  49. Van Deuren M, van der Ven-Jongekrijg J, Bertelink AKM, et al. Correlation between proinflammatory cytokines and antiinflammatory mediators and the severity of disease in meningococcal infections. J Infect Dis 1995;172:433–9.

    Article  PubMed  Google Scholar 

  50. Tartaglia LA, Goeddel DV. Two TNF receptors. Immunol Today 1992;13:151–3.

    Article  CAS  PubMed  Google Scholar 

  51. Aderka D, Engelmann H, Maor Y, et al. Stabilisation of the bioactivity of tumor necrosis factor by its soluble receptors. J Exp Med 1992;175:323–9.

    Article  CAS  PubMed  Google Scholar 

  52. Ertel W, Scholl FA, Gallati H, et al. Increased release of soluble tumor necrosis factor receptors into blood during clinical sepsis. Arch Surg 1994;129:1330–7.

    Article  CAS  PubMed  Google Scholar 

  53. Fischer E, Marano MA, van Zee KJ, et al. Intedeukin-1 receptor blockade improves survival and hemodynamic performance in Escherichia coli septic shock, but fails to alter host responses to sublethal endotoxemia. J Clin Invest 1992;89:1551–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Grdlund B, Sj”lin J, Nilsson A, et al. Plasma levels of cytokines in primary septic shock in humans: correlation with disease severity. J Infect Dis 1995;172:296–301.

    Article  Google Scholar 

  55. Cross AS, Opal SM, Palardy JE, et al. The efficacy of combination immunotherapy in experimental Pseudomonas sepsis. J Infect Dis 1993;167:112–18.

    Article  CAS  PubMed  Google Scholar 

  56. Ziegler EJ, McCutchan JA, Fierer J, et al. Treatment of gram-negative bacteraemia and shock with human anti-serum to a mutant Escherichia coli. N Eng J Med 1982;307:1225–30.

    Article  CAS  Google Scholar 

  57. Baumgartner J-D, Glauser MP, McCutchan JA, et al. Prevention of gram-negative shock and death in surgical patients by antibody to endotoxin core glycolipid. Lancet 1985;ii:59–63.

    Article  Google Scholar 

  58. Ziegler EJ, Fisher CJ, Sprung CL, et al. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. N Eng J Med 1991;324:42–436.

    Article  Google Scholar 

  59. French National Registry of HA-1A. THe French National Registry of HA-1A (Centoxin) in septic shock. A cohort study of 600 patients. The National Committee for the evaluation of Centoxin. Arch Intern Med 1994;154:2484–91.

    Article  Google Scholar 

  60. McCloskey RV, Straube RC, Sanders C, et al. for the CHESS Trial Study Group. Treatment of septic shock with human monoclonal antibody HA-1A. A randomised, double-blind, placebo-controlled trial. Ann Intern Med 1994;121:1–5.

    Article  CAS  PubMed  Google Scholar 

  61. Dellinger RP. Post hoc analyses in sepsis trials: a formula for disappointment? Crit Care Med 1996;24:727–9.

    Article  CAS  PubMed  Google Scholar 

  62. Greenman RL, Schein RMH, Martin MA, et al. A controlled trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of gram-negative sepsis. JAMA 1991;266:1097–102.

    Article  CAS  PubMed  Google Scholar 

  63. Bone RC, Balk RA, Fein AM, et al. and the E5 Sepsis Study Group. A second large controlled clinical study of E5, a monoclonal antibody to endotoxin: results of a prospective, multicenter, randomised controlled trial. Crit Care Med 1995;23:994–1005.

    Article  CAS  PubMed  Google Scholar 

  64. Gallay P, Heuman D, Le Roy D, et al. Mode of action of anti-lipopolysaccharide-binding protein antibodies for prevention of endotoxemic shock in mice. Proc Natl Acad Sci USA 1994;91:7922–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Evans TJ, Carpenter A, Moyes D, et al. Protective effect of a recombinant amino-terminal fragment of human bactericidal/permeability-increasing protein in an animal model of gram-negative sepsis. J Infect Dis 1995;171:153–60.

    Article  CAS  PubMed  Google Scholar 

  66. Von der M”hlen MAM, Kimmings AN, Wedel NI, et al. Inhibition of endotoxin-induced cytokine release and neutrophil activation in humans by use of recombinant bactericidal/permeability-increasing protein. J Infect Dis 1995;172:144–51.

    Article  Google Scholar 

  67. Christ WJ, Asano O, Robidoux ALC, et al. E5331, a pure endotoxin antagonist of high potency. Science 1995;268:80–3.

    Article  CAS  PubMed  Google Scholar 

  68. Silva AT, Bayston KF, Cohen J. Prophylactic and therapeutic effects of a monoclonal antibody to tumor necrosis factor-α in experimental gram-negative shock. J Infect Dis 1990;162:421–7.

    Article  CAS  PubMed  Google Scholar 

  69. Abraham E, Wunderink R, Silverman H, et al. and the TNF-α MAb Sepsis Study Group. Efficacy and safety of monoclonal antibody to human tumor necrosis factor α in patients with sepsis syndrome. A randomised, controlled, double-blind, multicenter clinical trial. JAMA 1995;273:934–41.

    Article  CAS  PubMed  Google Scholar 

  70. Cohen J, Cadet J and the INTERSEPT Study Group. INTERSEPT: an international multicenter placebo-controlled trial of monoclonal antibody to human TNF-α in patients with the sepsis syndrome. Crit Care Med 1996;24:1431–9.

    Article  CAS  PubMed  Google Scholar 

  71. Abraham E, Anzueto A, Gutierrez G, et al. and the NORASEPT II Study Group. Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. Lancet 1998;351:929–33.

    Article  CAS  PubMed  Google Scholar 

  72. Fisher CJ, Opal SM, Dhainaut J-F, et al. Influence of anti-tumor necrosis factor monoclonal antibody of cytokine levels in patients with sepsis. Crit Care Med 1993;21:318–27.

    Article  PubMed  Google Scholar 

  73. Reinhart K, Wiegand-L”hnert C, Grimminger F, et al. Assessment of the safety and efficacy of the monoclonal anti-tumor necrosis factor antibody fragment, MAK 195F, in patients with sepsis and septic shock: a multicentre, randomised, placebo-controlled, dose-ranging study. Crit Care Med 1996;24:733–42.

    Article  CAS  PubMed  Google Scholar 

  74. Evans TJ, Moyes D, Carpenter A, et al. Protective effect of 55-but not 75-kD soluble tumor necrosis factor receptor-immunoglobulin G fusion proteins in an animal model of gram-negative sepsis. J Exp Med 1994;180:2173–9.

    Article  CAS  PubMed  Google Scholar 

  75. Abraham E, Glauser M, Butler T, et al. p55 Tumour necrosis factor receptor fusion protein in the treatment of patients with severe sepsis and septic shock. JAMA 1997;277:1531–8.

    Article  CAS  PubMed  Google Scholar 

  76. Fisher CJ, Agosti JM, Opal SM, et al. Treatment of septic shock with the tumor necrosis facto receptor: Fc fusion protein. N Eng J Med 1996;334:1697–702.

    Article  CAS  Google Scholar 

  77. Lefering R, Neugebauer EAM. Steroid controversy in sepsis and septic shock. Crit Care Med 1995; 23:1294–1303.

    Article  CAS  PubMed  Google Scholar 

  78. Doherty GM, Jensen JC, Alexander HR, et al. Pentoxifylline suppression of tumor necrosis factor gene transcription. Surgery 1991;110:192–8.

    CAS  PubMed  Google Scholar 

  79. Refsum SE, Halliday MI, Campbell G, et al. Modulation of TNF-α and IL-6 in a peritonitis model using pentoxifylline. J Pediatr Surg 1996;31:928–30.

    Article  CAS  PubMed  Google Scholar 

  80. Hoffmann H. Pentoxifylline in experimental sepsis. In: Faist E, Baue AE, Schildberg FW. The immune consequences of trauma, shock and sepsis-Mechanisms and therapeutic approaches. Volume 2. Legerich: Pabst Science Publisher, 1996:1245–9.

    Google Scholar 

  81. Chalkiadakis GE, Kostakis A, Karayannacos PE, et al. Pentoxifylline in the treatment of experimental peritonitis in rats. Arch Surg 1985;120:1141–4.

    Article  CAS  PubMed  Google Scholar 

  82. Staubach K-H, Schröder J, Staber F, et al. Effect of pentoxifylline in severe sepsis. Arch Surg 1998;133:94–100.

    Article  CAS  PubMed  Google Scholar 

  83. Fisher CJ, Slotman GJ, Opal SM, et al. Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: a randomised, open-label, placebo-controlled multicentre trial. Crit Care Med 1994;22:12–21.

    PubMed  Google Scholar 

  84. Fisher CJ, Dhainaut J-F, Opal SM, et al. for the Phase III rhIL-1Ra Sepsis Syndrome Study Group. Recombinant interleukin-1 receptor antagonist in the treatment of patients with sepsis syndrome: results from a randomised double-blind placebo controlled trial. JAMA 1994;271:1836–43.

    Article  PubMed  Google Scholar 

  85. Opal SM, Fisher CJ, Dhainaut J-FA, et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis. A phase III, randomised, double-blind, placebo-controlled, multicentre trial. Crit Care Med 1997;25:1115–24.

    Article  CAS  PubMed  Google Scholar 

  86. Moreland LW, Baumgartner SW, Schiff MH, et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N Eng J Med 1997; 337:141–7.

    Article  CAS  Google Scholar 

  87. Ridings PC, Windsor ACJ, Sugerman HI, et al. Beneficial cardiopulmonary effects of pentoxifylline in experimental sepsis are lost once septic shock is established. Arch Surg 1994;129:1144–52.

    Article  CAS  PubMed  Google Scholar 

  88. Vincent J-L. Search for effective immunomodulating strategies against sepsis. Lancet 1998;351:922–3.

    Article  CAS  PubMed  Google Scholar 

  89. Ksontini R, Mackay SLD, Moldawer LL. Revisiting the role of tumour necrosis factor IX and the response to surgical injury and inflammation. Arch Surg 1998;133:558–67.

    Article  CAS  PubMed  Google Scholar 

  90. Piper RD, Cook OJ, Bone RC, et al. Introducing Critical Appraisal to studies of animal models investigating novel therapies in sepsis. Crit Care Med 1996;24:2059–70.

    Article  CAS  PubMed  Google Scholar 

  91. Deitch EA. Animal models of sepsis and shock: a review and lessons learned. Shock 1998;9:1–11.

    Article  CAS  PubMed  Google Scholar 

  92. Baue AE. Multiple organ failure, multiple organ dysfunction syndrome and systemic inflammatory response syndrome; why no magic bullets? Arch Surg 1997;132:703–7.

    Article  CAS  PubMed  Google Scholar 

  93. Stäber F, Petersen M. Bokelmann F, et al. A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis. Crit Care Med 1996;24:381–4.

    Article  Google Scholar 

  94. Mira J-P, Cariou A, Grall F, et al. Association of TNF2, a TNF-α promoter polymorphism, with septic shock susceptibility and mortality. JAMA 1999;282:561–8.

    Article  CAS  PubMed  Google Scholar 

  95. Zeni F, Freeman B, Natanson C. Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment. Crit Care Med 1997;25:1095–100.

    Article  CAS  PubMed  Google Scholar 

  96. Dhainaut JFA, Vincent JI, Richard C. CDP571, a humanised antibody to human tumor necrosis factor-alpha: safety, pharmacokinetics, immune response and influence of the antibody on cytokine concentrations in patients with septic shock. Crit Care Med 1995;23:1461–9.

    Article  CAS  PubMed  Google Scholar 

  97. Abraham E, Glauser MP, Butler T, et al. for the Ro 45-2081 Study Group. p55 tumor necrosis factor receptor fusion protein in the treatment of patients with severe sepsis and septic shock. JAMA 1997;277:1531–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London

About this chapter

Cite this chapter

Parker, S.J., Windsor, A.C.J. (2002). The Immunology of Sepsis. In: Zbar, A.P., Guillou, P.J., Bland, K.I., Syrigos, K.N. (eds) Immunology for Surgeons. Springer, London. https://doi.org/10.1007/978-1-4471-0201-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0201-4_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-482-6

  • Online ISBN: 978-1-4471-0201-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics