Skip to main content

Abstract

In line with the efforts of ITU to provide global recommendations for IMT-2000, WG3 activities addressed in particular to the W-CDMA approach. The choice of CDMA for the third generation wireless communications is attractive because of its potential capacities to support universal frequency reuse, variable rate heterogeneous traffic and the possibility to use classical time diversity techniques together with Multiuser Detection (MUD) to contrast multipath fading effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davarian F (1994) Earth-satellite propagation research. IEEE Comm Mag 74–79, April 1994.

    Google Scholar 

  2. Goldhirsch J, Vogel WJ (1994) Mobile satellite propagation measurements from UHF to K band. Proceedings 15th AIAA International Communications Satellite Systems Conference, pp 913–920

    Google Scholar 

  3. Lutz E et al (1991) The land mobile satellite communication channel - recording, statistics and channel model. IEEE Trans Veh Tech, 40:375–386.

    Article  Google Scholar 

  4. Butt G, Evans BG, Richharia M (1992) Narrowband channel statistics from multiband propagation measurements applicable to high elevation angle land-mobile satellite systems. IEEE J Sel Areas in Comm 10:1219–1226.

    Article  Google Scholar 

  5. Kleiner N, Vogel WJ (1992) Impact of propagation impairments on optimal personal mobile SATCOM system design. Conference Proceedings Mobile/Personal Communications Systems.

    Google Scholar 

  6. Parks M, Saunders S, Evans B (1996) A wideband channel model applicable to mobil satellite systems at L- and S-Band. IEE Colloquium on propagation aspects of future mobile systems.

    Google Scholar 

  7. Jahn A, Lutz E (1994) DLR channel measurement programme for low earth orbit satellite systems. Proceedings International Conference on Universal Personal Communications ICUPC’94, pp 423.429.

    Article  Google Scholar 

  8. Ernst H, Jahn A (1998) Channel models for land mobile satellite systems: a survey. ITG- Fachtagung Wellenausbreitung bei Funksystemen und Mikrowellensystemen, this issue.

    Google Scholar 

  9. Lutz E et al (1991) The land mobile satellite communication channel - recording, statistics and channel model. IEEE Trans Veh Tech 40:375–386.

    Article  Google Scholar 

  10. Jahn A et al (1995) A wideband channel model for land mobile satellite systems. Proc Fourth Int Mobile Satellite Conf IMSC’95, pp 122–127.

    Google Scholar 

  11. Jahn A, Bischl H, Heiß (1996) Channel characterisation for spread spectrum satellite communications. Proc IEEE Fourth International Symposium on Spread Spectrum Techniques and Applications (ISSSTA’96), pp 1221–1226.

    Article  Google Scholar 

  12. H. Ernst, A. Jahn (1998) Channel models for land mobile satellite systems: a survey. ITG- Fachtagung Wellenausbreitung bei Funksystemen und Mikrowellensystemen, this issue.

    Google Scholar 

  13. Höher P, et al (1997) A suitability study of satellite emulation by airborne platforms. Int J Sat Comm 15:51–64.

    Article  Google Scholar 

  14. Jahn A (1994) Propagation data and channel model for LMS systems. Final Report, ESA Purchase Order 141742, DLR, Institut für Nachrichtentechnik.

    Google Scholar 

  15. Lutz E et al (1991) The land mobile satellite communication channel - recording, statistics and channel model. IEEE Trans Veh Tech 40:375–386.

    Article  Google Scholar 

  16. Ernst H, Jahn A (1998) Channel models for land mobile satellite systems: a survey. ITG- Fachtagung Wellenausbreitung bei Funksystemen und Mikrowellensystemen, this issue.

    Google Scholar 

  17. Jahn A, Bischl H, Heiß G (1996) Channel characterisation for spread spectrum satellite communications. Proc. IEEE Fourth International Symposium on Spread Spectrum Techniques and Applications (ISSSTA’96), pp 1221–1226.

    Google Scholar 

  18. Jahn A, Bischl H, Lutz E (1996) Wideband channel model for UMTS satellite communications - detailed model. ETSI SMG5 (96) TD 006/96.

    Google Scholar 

  19. Jahn A, Bischl H, Lutz E (1996) Wideband channel model for UMTS satellite communications - tapped delay model. ETSI SMG5 (96) TD 007/96.

    Google Scholar 

  20. Jahn A, Bischl H, Lutz E (1996) Wideband channel model for UMTS satellite communications. ITU, REVAL, ITU-TG81, Meeting Mainz, Germany, 15–26 April.

    Google Scholar 

  21. Lutz E et al (1991) The land mobile satellite communication channel - recording, statistics and channel model. IEEE Trans Vehicular Technology, 40:375–386.

    Article  Google Scholar 

  22. Jahn A et al (1995) A wideband channel model for land mobile satellite systems, Proc Fourth Int. Mobile Satellite Conf IMSC’95, pp 122–127.

    Google Scholar 

  23. Lutz E (1996) A Markov model for correlated land mobile satellite channels, International Journal of Satellite Communications, 14, 333.339.

    Article  Google Scholar 

  24. Robet P.P., Evans B.G. and Ekman A (1992) Land mobile satellite communications channel model for simultaneous transmission from a land mobile terminal via two separate satellites, Int J Sat Comm 10:139–154.

    Article  Google Scholar 

  25. Lutz E et al (1991) The land mobile satellite channel - recording, statistics and channel model. IEEE Trans of Veh Tech, VT-40: 375–386.

    Article  Google Scholar 

  26. Lutz E, Cygan D, Dippold M, Dolainsky F, Papke W, (1991) The land mobile satellite channel - recording, statistics and channel model IEEE Trans of Veh Tech, VT-40, pp 375–386.

    Google Scholar 

  27. Lutz E (1996) A Markov model for correlated land mobile satellite channels, Int J Sat Comm 14:333–339.

    Article  Google Scholar 

  28. Jahn A, Bischl H, Heiß G (1996) Channel charaterisation for spread spectrum satellite communications, Proc IEEE Fourth Symposium on Spread Spectrum Techniques and Appi, ISSSTA.

    Google Scholar 

  29. Akturan R, Vogel W, (1997) Path diversity for LEO-satellite-PCS in the urban environment, IEEE on Ant and Prop 45(7) July 1997.

    Google Scholar 

  30. Vogel WJ (1997) Satellite diversity for personal satellite communications - modelling and measurements, Tenth Int Conf on Ant and Prop, ICAP’97, pp 1269–1272.

    Google Scholar 

  31. Akturan R, Penwarde K (1997) Satellite diversity as a propagation impairment mitigation technique for non-GSO MSS systems. International Mobile Satellite Conference, Pasadena.

    Google Scholar 

  32. Karasawa Y, Kimura K, Minamisono K (1997) A propagation channel model for personal mobile-satellite services, IEEE Trans on Veh. Tech, VT-46:4.

    Google Scholar 

  33. Meenan C et al (1998) Availability of First Generation Satellite Personal Communications Network Service in Urban Environments, IEEE VTC’98, pp 1471–1475.

    Google Scholar 

  34. Lutz E (1996) A Markov model for correlated land mobile satellite channels, Int J Sat Comm 14:333–339.

    Article  Google Scholar 

  35. Robet PP, Evans BG, Ekman A (1992) Land mobile satellite communication channel model for simultaneous transmission from a land mobile terminal via two separate satellites. Int J Sat Comm 10:139–154.

    Article  Google Scholar 

  36. Akturan R, Vogel WJ (1997) Path Diversity for LEO Satellite-PCS in the Urban Environment, IEEE Trans Veh Tech 45:1107–1116.

    Google Scholar 

  37. Lutz E (1996) A Markov model for correlated land mobile satellite channels. Int J Sat Comm 14:333–339.

    Article  Google Scholar 

  38. Jahn A, Bischl H, Heiß G, (1996) Channel Charaterisation for Spread Spectrum Satellite Communications, Proc IEEE Fourth Symposium on Spread Spectrum Techniques and Appi, ISSSTA.

    Google Scholar 

  39. Tzaras C., Evans B.G. and Saunders R.S. (1998) A physical-statistical analysis of the land mobile satellite channel, IEEE Electronics Letters 34(13):1355–1357.

    Article  Google Scholar 

  40. Fontan FP, et al (1998) A methodology for the characterisation of environmental effects on global navigation satellite system (GNSS) Propagation, Int Sat Comm 16:1–22.

    Article  Google Scholar 

  41. Tzaras C, Saunders SR, Evans BG (1998) A Physical-Statistical Propagation model for diversity in mobile Satellite PCN, IEEE VTC’98.

    Google Scholar 

  42. Saunders SR et al (1997) A physical statistical model for land mobile satellite propagation in built-up areas. Tenth International Conference on Antennas and Propagation, ICAP’97, pp 2.44–2.47.

    Google Scholar 

  43. Tzaras C, Evans BG, Saunders RS (1998) A physical-statistical analysis of the land mobile satellite channel. IEEE Electronics Letters 34(13): 1355–1357.

    Article  Google Scholar 

  44. Fontan FP et al (1998) A methodology for the characterisation of environmental effects on global navigation satellite system (GNSS) propagation. Int J Sat Comm 16:1–22.

    Article  Google Scholar 

  45. Vazquez MA, (1998) Land mobile satellite channel modelling by means of statistical and deterministic methods, PhD thesis, University of Vigo, Spain (in Spanish).

    Google Scholar 

  46. Jahn A, Bischl H, Heiß G (1996) Channel charaterisation for spread spectrum satellite communications, Proc IEEE Fourth Symposium on Spread Spectrum Techniques and Appl, ISSSTA.

    Google Scholar 

  47. Tzaras C, Saunders SR, Evans BG (1998) A physical-statistical propagation model for diversity in mobile satellite PCN, IEEE VTC’98.

    Google Scholar 

  48. Krewel W, Maral G (1998) Single and multiple satellite visibility statistics of first-generation non-GEO constellations for personal communications. Int J Sat Comm 16:105–125.

    Article  Google Scholar 

  49. Akturan R, Vogel W (1997) Path Diversity for LEO-Satellite-PCS in the Urban Environment, IEEE on Ant and Prop 45(7), July (1997).

    Google Scholar 

  50. Bosch J (1996) Impact of diversity reseption on fading channels with coded modulation’, PhD thesis, Politecnico di Torino.

    Google Scholar 

  51. Akturan R, Vogel W (1997) Path diversity for LEO-satellite-PCS in the urban environment. IEEE on Ant and Prop 45(7), July 1997.

    Google Scholar 

  52. Bosch J (1996) Impact of diversity reseption on fading channels with coded modulation. PhD thesis, Politecnico di Torino.

    Google Scholar 

  53. Goldhirsh J, Vogel W (1992) Propagation effects for land mobile satellite systems: overview of experimental and modelin results, NASA Reference Puiblication 1274.

    Google Scholar 

  54. Davidoff M (1994) The Satellite Experimenter’s Handbook. The American Radio Relay League.

    Google Scholar 

  55. Krewel W, Maral G (1998) Single and multiple satellite visibility statistics of first-generation non-GEO constellations for personal communications. Int J Sat Comm 16;105–125.

    Article  Google Scholar 

  56. Zaghloul A (1990) Advances in multibeam communications satellite antennas. Proc. IEEE 78(7):1214–1232.

    Article  Google Scholar 

  57. Rao, KS et al (1992) Reconfigurable L-Band active array antennas for satellite communications, Can J Elect and Comp Eng 17(3).

    Google Scholar 

  58. Cances J-P, et al (1994) Coverage reconfiguration for dynamicallocation in a multibeam satellite system, Fifteenth AIAA International Communications Satellite Systems Conference (ICSSC-15), pp 1032–1041, San Diego, 28 February-3 March 1994.

    Google Scholar 

  59. Luglio M, Forcella A, Vatalaro F (1998) Mitigation of Interference Impairments due to Multibeam Coverage for Geostationary Satellite Systems in case of Site and Time Dependent Traffic Distribution for MF_TDMA Access, Technical Document TD(98)25, COST252.

    Google Scholar 

  60. Del Re E, Fantacci R, Giambene G (1995) Efficient Dynamic Channel Allocation Techniques with Hand over Queuing for Mobile Satellite Networks’, IEEE J Sei Areas Comm 13(2):397–404.

    Article  Google Scholar 

  61. Lüders R (1961) Satellite Networks for continous zonal coverage. Am Rocket Soc J.

    Google Scholar 

  62. Cercas FAB (1996) A new family of codes for simple receiver implementation, PhD Thesis, Technical University of Lisbon, Instituto Superior Tecnico, March 1996.

    Google Scholar 

  63. Tomlinson M, Cercas FAB, Hughes EC (1991) Aspects of coding for power efficient satellite VSAT systems, ESA Journal 15:165–185.

    Google Scholar 

  64. Cercas FAB (1996) A new family of codes for simple receiver implementation, PhD thesis, Technical University of Lisbon, Instituto Superior Tecnico, March 1996.

    Google Scholar 

  65. Rice M et al (1996) K-band land-mobile satellite channel characterisation using ACTS. Intern Journ of Sat Comm 14:283–296.

    Article  Google Scholar 

  66. Hans Riesel (1985) Prime numbers and computer methods for factorization, Progress in Mathes, vol. 57.

    Google Scholar 

  67. Cercas FAB (1996) A new family of codes for simple receiver implementation, PhD thesis, Technical University of Lisbon, Instituto Superior Tecnico, March 1996.

    Google Scholar 

  68. Cercas FAB, Tomlinson M, Albuquerque AA (1993) TCH: A new family of cyclic codes length 2m, 1993 IEEE International Symposium on Information Theory, Hilton Palacio del Rio Hotel, San Antonio, Texas, USA, 17–22 January 1993, p 198.

    Google Scholar 

  69. TD(98) 15 Simplified Receiver Structure with new Sequences for CDMA using FFT Implementation, Cercas F, Del Re E, Fantacci R, Ronga LS.

    Google Scholar 

  70. Cercas FAB (1996) A new family of codes for simple receiver implementation, PhD Thesis, Technical University of Lisbon, Instituto Superior Tecnico, March 1996.

    Google Scholar 

  71. Gilbert E (1960) Capacity of a Burst-Noise Channel, The Bell System Tech J, September 1960, pp 1253.

    Google Scholar 

  72. Jeruchim M, Balaban P, Shanmugan K (1994) Simulation of Communications Systems, 2nd edn, Plenum Press, New York, 1994, p. 386.

    Google Scholar 

  73. Proakis JG (1995) Digital Communications, McGraw-Hill, 3rd edn.

    Google Scholar 

  74. Cercas FAB (1996) A new family of codes for simple receiver implementation, PhD Thesis, Technical University of Lisbon, Instituto Superior Tecnico, March 1996.

    Google Scholar 

  75. Bian Y, Popplewell A, O’Reilly J (1994) Novel Simulation Technique for Assessing Coding System Performance, Electronics Letters, 10 November 1994, 30(23).

    Google Scholar 

  76. Bian Y, Popplewell A, O’Reilly J (1994) Novel Simulation Technique for Assessing Coding System Performance, Electronics Letters, 10 November 1994, 30(23).

    Google Scholar 

  77. Jeruchim M, Balaban P, Shanmugan K (1994) Simulation of Communications Systems, 2nd edn, Plenum Press, New York, p. 393.

    Google Scholar 

  78. P. Sebastiäo, Efficient Simulation of the Performance of TCH Codes Using Stochastic Models (in Portuguese), M.Sc. Thesis, Instituto Superior Tecnico, Lisbon, October 1998.

    Google Scholar 

  79. Jeruchim M, Balaban P, Shanmugan K (1994) Simulation of Communications Systems, 2nd edn, Plenum Press, New York, p. 394.

    Google Scholar 

  80. Sebastiäo P (1998) Efficient Simulation of the Performance of TCH Codes Using Stochastic Models (in Portuguese), M.Sc. Thesis, Instituto Superior Tecnico, Lisbon, October 1998.

    Google Scholar 

  81. Jeruchim M, Balaban P, Shanmugan K (1994) Simulation of Communications Systems, 2nd edn, Plenum Press, New York, p. 394.

    Google Scholar 

  82. Jeruchim M, Balaban P, Shanmugan K (1994) Simulation of Communications Systems, 2nd edn, Plenum Press, New York, p. 395.

    Google Scholar 

  83. Cercas FAB (1996) A new family of codes for simple receiver implementation, PhD Thesis, Technical University of Lisbon, Instituto Superior Tecnico, March 1996.

    Google Scholar 

  84. ITU WWW site on Radio Transmission Technology proposals for IMT-2000, http://www.itu.int/imt/2-radio-dev/proposals/index.html

    Google Scholar 

  85. Adachi, Sawahashi F, Okawa M (1997) Tree-structured Generation of Orthogonal Spreading Codes with Different Lengths for Forward Link of DS-CDMA Mobile Radio, Electronics Letters, 33:27–28, January 1997.

    Article  Google Scholar 

  86. Verdii S (1998) Multiuser Detection, Cambridge University Press, Cambridge UK.

    Google Scholar 

  87. Del Re E et al (1999) Multi-user Cancellation Detector for S-UMTS Multirate Communications, Proc. Of the Fifth European Conference on Satellite Communications, November 1999, Toulouse, France.

    Google Scholar 

  88. Patel P, Holtzman J (1994) Analysis of a simple successive interference cancellation scheme in DS-CDMA system, IEEE J Sel Areas Comm., 12:796–807, June 1994.

    Article  Google Scholar 

  89. Viterbi A (1990) Very low rate convolutional codes for maximum theoretical performance, of spread spectrum multiple access channels, IEEE J on Sel Areas Comm 8(4), May 1990.

    Google Scholar 

  90. Patel P, Holtzman J (1995) Performance comparison of a DS-CDMA system using a successive interference cancellation scheme and a parallel IC scheme under fading, IEEE Comm. Mag 33:58–67, January 1995.

    Google Scholar 

  91. Yoon Y, Kohno R, Imai H (1996) A spread-spectrum multi-access system with co-channel interference cancellation over multipath fading channels, IEEE J Sel Areas Comm 11:1519–1521,1996.

    Google Scholar 

  92. Del Re E et al (1998) One-shot multiuser cancellation receiver for UMTS satellite CDMA systems, Proc of the sixth International Workshop on Digital Signal Processing Techniques for Space Applications, September 1998, ESTEC, NordWijk, The Netherlands.

    Google Scholar 

  93. Del Re E et al (1998) Multi-user cancellation detector for UMTS CDMA satellite communications, Proc of the Third European Workshop on Mobile/Personal Satcoms, EMPS98, November 1998, Venice, Italy.

    Google Scholar 

  94. Natali F (1984) AFC tracking algorithms. IEEE Trans Comm, 32:935–947, Aug. 1984.

    Article  MATH  Google Scholar 

  95. Bischl H, Jahn A, Lutz E (1998) Wideband channel model for UMTS satellite communications, TD(98)05 Temporary Document inside COSTaction252.

    Google Scholar 

  96. Bischl H, Jahn A, Lutz E (1998) Wideband channel model for UMTS satellite communications, TD(98)05 Temporary Document inside COSTaction252.

    Google Scholar 

  97. Fantacci R, Morosi S, Panchetti F (1999) One-Shot Multiuser Cancellation Receiver for Wireless CDMA Communication Systems, Proc of Vehicular Technology Conference (VTC99-Fall), Amsterdam, Holland, September 1999.

    Google Scholar 

  98. )Bischl H, Jahn A, Lutz E (1998) Wideband Channel Model for UMTS Satellite Communications, TD(98)05 temporary document inside COSTaction252.

    Google Scholar 

  99. )TD(98) 28. One-Shot Multi-User Cancellation Receiver for UMTS Satellite CDMA Systems, E. Del Re, R. Fantacci, S. Morosi, F. Panchetti, P. Bagnoli.

    Google Scholar 

  100. Bischl H, Jahn A, Lutz E (1998) Wideband Channel Model for UMTS Satellite Communications. TD(98)05 temporary document inside COSTaction252.

    Google Scholar 

  101. Bischl H, Jahn A, Lutz E (1998) Wideband channel model for UMTS satellite communications. TD(98)05 temporary document inside COSTaction252.

    Google Scholar 

  102. Proposta di un Ricevitore Multiutente Vettoriale per Sistemi di Comunicazione Radiomobile DS/CDMA, L. Mucchi, Telecommunications Engineering Degree Thesis.

    Google Scholar 

  103. Verdú S, Honig ML, Madhow U (1995) Blind Adaptive Multiuser Detection, IEEE Transactions on Information Theory 41(4), July 1995.

    Google Scholar 

  104. Bischl H, Jahn A, Lutz E (1998) Wideband Channel Model for UMTS Satellite Communications, TD(98)05 Temporary Document inside COSTaction252.

    Google Scholar 

  105. Del Re E et al (1999) Advanced Blind Adaptive Multiuser Detector for Communications in Non Stationary Multipath Fading Channel, Proc of the Fifth Bayona Workshop on Emerging Technologies in Telecommunications, September 1999, Bayona, Spain.

    Google Scholar 

  106. De Gaudenzi R, Giannetti F, Luise M (1998) Design of a low-complexity adaptive interference-mitigating detector for DS/SS receivers in CDMA Radio Networks. IEEE Trans Comm, January 1998.

    Google Scholar 

  107. Verdú S, Honig ML, Madhow U (1995) Blind adaptive multiuser detection, IEEE Trans on Inf Theory 41(4), July 1995.

    Google Scholar 

  108. De Gaudenzi R, Giannetti F, Luise M (1998) Design of a Low-Complexity Adaptive Interference-Mitigating Detector for DS/SS Receivers in CDMA Radio Networks, IEEE Trans Comm, January 1998.

    Google Scholar 

  109. Verdú S, Honig ML, Madhow U (1995) Blind adaptive multiuser detection, IEEE Trans on Inf Theory 41(4), July 1995.

    Google Scholar 

  110. Madhow U, Honig ML (1993) MMSE detection of CDMA signals: analysis for random signature sequences, Proc 1993 IEEE Int Symp on Information Theory, January 1993.

    Google Scholar 

  111. Verdú S, Honig ML, Madhow U (1995) Blind Adaptive Multiuser Detection. IEEE Trans on Inf Theory 41(4), July 1995.

    Google Scholar 

  112. Verdú S, Honig ML, Madhow U (1995) Blind Adaptive Multiuser Detection. IEEE Trans on Inf Theory 41(4), July 1995.

    Google Scholar 

  113. De Gaudenzi R, Giannetti F, Luise M (1998) Design of a Low-Complexity Adaptive Interference-Mitigating Detector for DS/SS Receivers in CDMA Radio Networks. IEEE Trans Comm, January 1998.

    Google Scholar 

  114. Del Re E et al (1999) Advanced Blind Adaptive Multiuser Detector for Communications in Non Stationary Multipath Fading Channel. Proc of the Fifth Bayona Workshop on Emerging Technologies in Telecommunications, September 1999, Bayona, Spain.

    Google Scholar 

  115. Smith RF, Miller SL, Acquisition Performance of an MMSE Receiver for DS-CDMA, submitted to IEEE Transactions on Vehicular Technology.

    Google Scholar 

  116. Proposta di un Ricevitore Multiutente Vettoriale per Sistemi di Comunicazione Radiomobile DS/CDMA, Mucchi L, Telecommunications Engineering degree thesis.

    Google Scholar 

  117. TD(98) 27 Application of the OFDM-CDMA Technique in a LEO satellite system for communications with multiple bit-rate services, L. Branchetti, E. Del Re, R. Fantacci, L. Ronga.

    Google Scholar 

  118. )TD(98) 27 Application of the OFDM-CDMA Technique in a LEO Satellite System for Communications with Multiple Bit-Rate Services, Branchetti L, Del Re E, Fantacci R, Ronga L.

    Google Scholar 

  119. TD(98) 08 FFT Implementation of OFDM-CDMA using Perfect Sequences in Multipath Environment, Del Re E, Fantacci R, Ronga L.

    Google Scholar 

  120. TD(98) 08 FFT Implementation of OFDM-CDMA using Perfect Sequences in Multipath Environment, Del Re E, Fantacci R, Ronga L.

    Google Scholar 

  121. Pursley MB, Performance evaluation for phased-coded spread-spectrum multiple-access communication - Part I: System analysis, IEEE Trans Commun, COM-25(8): pp 795–799, August 1977.

    Article  MathSciNet  MATH  Google Scholar 

  122. Pursley MB, Sarwate DV (1977) Evaluation of correlation parameters for periodic sequences“, IEEE Trans Inform Theory, IT-23(4): pp 508–513, July 1977.

    Article  MathSciNet  MATH  Google Scholar 

  123. Börner L, Antweiler M (1992) Perfect n-phase sequences, IEEE J Sel Areas Comm 10(4):782–789, May 1992.

    Google Scholar 

  124. Chu DC (1972) Polyphase codes with good periodic correlation properties, IEEE Trans Inform Theory, IT-18:531–532.

    Article  Google Scholar 

  125. Frank RL, Zado S (1962) Phase shift pulse code with good periodic correlation properties, IEEE Trans Inform Theory, IT-8:381–382.

    Article  Google Scholar 

  126. Milewski A (1983) Periodic sequences with optimal properties for channel estimation and fast start-up equalisation, IBM J Res Develop 27:426–431,1983.

    Article  Google Scholar 

  127. Viterbi A (1990) Very low rate convolutional codes for maximum theoretical performance of spread spectrum multiple access channels, IEEE J Sel Areas Comm, 8(4), May 1990.

    Google Scholar 

  128. Frenger P, Orten P, Ottosson T (1998) Combined coding and spreading in CDMA systems using maximum free distance convolutional codes, Forty-eighth Annual Vehicular Tech Conf, Ottawa, Canada, 18–21 May 1998.

    Google Scholar 

  129. Viterbi A (1990) Very low rate convolutional codes for maximum theoretical performance of spread spectrum multiple access channels, IEEE J Sel Areas Comm 8(4), May 1990.

    Google Scholar 

  130. Viterbi A (1967) Orthogonal tree codes for communications in the presence of white gaussian noise, IEEE Trans on Comm Tech, COM-15, April 1967.

    Google Scholar 

  131. Viterbi AJ, Omura JK (1979) Principles of digital communication and coding. McGraw-Hill.

    Google Scholar 

  132. Gilbert E (1960) Capacity of a Burst-Noise Channel, The Bell System Tech J, September 1960, p 1253.

    Google Scholar 

  133. Frenger P, Orten P, Ottosson T (1998) Combined coding and spreading in CDMA systems using maximum free distance convolutional codes, Forty-eighth Annual Vehicular Tech Conf, Ottawa, Canada, 18–21 May, 1998.

    Google Scholar 

  134. Pursley MB (1977) Performance evaluation for phased-coded spread-spectrum multiple-access communication - Part I: System analysis, IEEE Trans Comm COM-25(8):795–799 August 1977.

    Article  MathSciNet  Google Scholar 

  135. Prasad R (1996) CDMA for wireless personal communications. Artech House Publishers, 1996.

    Google Scholar 

  136. Andrson J, Aulin T, Sundberg C-E (1986) Digital phase modulation. Plenum Press Company.

    Google Scholar 

  137. Blahut RE (1983) Theory and practice of error control codes. Addison Wesley.

    Google Scholar 

  138. Del Re E et al (1999) Multi-user cancellation detector for S-UMTS multirate communications. Proc of the Fifth European Conference on Satellite Communications, November 1999, Toulouse, France.

    Google Scholar 

  139. Gilhousen et al (1991) On the capacity of a cellular CDMA System, IEEE Trans Veh Tech pp 303–312, May 1991.

    Google Scholar 

  140. Gold R (1968) Maximal recursive sequences with 3-valued recursive cross-correlation functions, IEEE Trans Inform Theory IT-14:154–156, Jan. 1968.

    Article  Google Scholar 

  141. Joseph Hui (1984) Throughput analysis for code division multiple accessing of the spread spectrum channel, IEEE J Sel Areas in Comm SAC-2(4) July 1984.

    Google Scholar 

  142. Losquadro G, Luglio M, Vatalaro F (1997) A geostationary satellite system for mobile multimedia applications using portable, aeronautical and mobile terminals. Proceedings Fifth International Mobile Satellite Conference (IMSC’97), pp 427–432,1997.

    Google Scholar 

  143. Sarwate, Pursley (1980) Crosscorrelation Properties of Pseudo-random and Related Sequences, Proceedings of the IEEE, May 1980.

    Google Scholar 

  144. Steele (1992) Mobile Radio Communications, Pentech Press, London.

    Google Scholar 

  145. Webb W, Hanzo L (1994) Modern Quadrature Amplitude Modulation, IEEE Press, Pentech Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London

About this chapter

Cite this chapter

Cercas, F., Krewel, W. (2002). Air Interface Aspects. In: Del Re, E., Pierucci, L. (eds) Satellite Personal Communications for Future-generation Systems. Springer, London. https://doi.org/10.1007/978-1-4471-0131-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0131-4_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-537-3

  • Online ISBN: 978-1-4471-0131-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics