Network Aspects of Dynamic Satellite Multimedia Systems

  • A. Sammut
  • I. Mertzanis
  • C. Meenan
  • G. Sfikas
  • E. Del Re
  • R. Fantacci
  • G. Giambene
  • V. Santos
  • M. Dinis
  • J. Neves
  • M. Werner
  • J. Bostic
  • C. Delucchi
  • M. Mohorcic
  • A. Svigelj
  • G. Kandus


The spread of wideband services to the office and home through fixed and terrestrial mobile networks will create a market for the extension of such services for people on the move and for those who work outside the office environment. Various wideband terrestrial cellular systems will serve users at both local and global level, although the scope for deployment of such systems in the early phase (2000+) will be limited to densely populated and affluent areas, resulting in a potential requirement for wireless access technologies which can connect users to the network in other areas.


Medium Access Control Layer Time Division Multiple Access Satellite Network Round Trip Propagation Delay Handover Request 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Sammut A, Mertzanis I, Tafazolli R, Evans BG (1998) Networking for a future MEO multimedia satellite systems: COST 252 TD(98)01. Fifth Management Committee Meeting, Florence, Italy, 12–13 February 1998.Google Scholar
  2. (2).
    Meenan C, Tafazolli R, Evans BG (1997) Satellite-PCN mobility management, COST 252 TD(97)11. Fourth Management Committee Meeting, Wessling, Germany, 17–18 November 1997.Google Scholar
  3. (3).
    Berruto E et al (1997) Architectural aspects for the evolution of mobile communications towards UMTS, IEEE JSAC 15(8): October 1997.Google Scholar
  4. (4).
    Del Re E, Fantacci R, Giambene G, Walter S (1997) Performance evaluation of an improved PRMA protocol for low earth orbit mobile communications systems, COST 252, TD(97)12, November 1997.Google Scholar
  5. (5).
    Del Re E, Fantacci R, Giambene G, Cerboni C (1998) Performance evaluation of the PRMA protocol for voice and data transmissions in low earth orbit mobile communications systems, COST 252 TD(98)02. Fifth Management Committee Meeting, Florence, Italy,12–13 February 1998.Google Scholar
  6. (6).
    Mertzanis I, Tafazolli R, Evans BG (1997) Protocol architecture scenarios for satellite and B-ISDN network integration. Third Ka-band Utilisation Conference. Sorrento, Italy, September 1997.Google Scholar
  7. (7).
    Mazzella M (1997) Development of novel satellite mobile applications (1997) The SINUS project, IEEE Colloquium on EU’s initiatives in satellite communications-mobile. London, 8 May 1997.Google Scholar
  8. (8).
    Bostic J, Kandus G, Werner M (1997) MAC for ATM over satellite. COST 252 TD(97)10, Fourth Management Committee Meeting, Wessling, Germany, 17–18 November 1997.Google Scholar
  9. (9).
    Werner M (1997) ATM concepts for satellite personal communication networks, COST 252 TD(97)02. Second Management Committee Meeting, Brussels, 6–7 February 1997.Google Scholar
  10. (10).
    Mertzanis I, Tafazolli R, Evans BG (1997) Connection admission control strategy and routing considerations in multimedia (NON-GEO) satellite networks. IEEE VTC’97, Phoenix, USA, May 1997.Google Scholar
  11. (11).
    Bostic J et al (1998) Multiple access protocols for ATM over low earth orbit satellites. First 252/259 Joint Workshop, University of Bradford, UK, 21–22 April, 1998.Google Scholar
  12. (12).
    Del Re E (1996) A Coordinated European effort for the definition of a satellite integrated environment for future mobile communications, IEEE Comm Mag 34(2):98–104, February 1996.CrossRefGoogle Scholar
  13. (13).
    Restrepo J and Maral G (1996) Constellation sizing for non-GEO “Earth-Fixed Cell” satellite systems. Proceedings of the AIAA Sixteenth International Communications Satellite Systems Conference and Exhibit, Washington DC, USA, 25–29 February, pp 25–29.Google Scholar
  14. (14).
    Tekinay S, Jabbari, B (1991) Handover and channel assignments in mobile cellular networks, IEEE Comm Mag 29(11) 42–46, November 1991.CrossRefGoogle Scholar
  15. (15).
    Del Re E, Fantacci R, Giambene G (1994) performance analysis of a dynamic channel allocation technique for satellite mobile cellular networks, Int J Sat Comm 12:25–32, January/February 1994.CrossRefGoogle Scholar
  16. (16).
    Del Re E, Fantacci R, Giambene G (1995) Efficient dynamic channel allocation techniques with handover queuing for mobile satellite networks. IEEE J Selected Areas Comm 13(2):397–405, February 1995.CrossRefGoogle Scholar
  17. (17).
    Del Re E, Fantacci R, Giambene G (1995) An efficient technique for dynamically allocating channels in satellite cellular networks. Proceedings of IEEE GLOBECOM’95, pp 1624–1628, Singapore, 1624–1628 November 1995.Google Scholar
  18. (18).
    Hu HF, et al (1998) Satellite-UMTS Traffic Dimensioning and Resource Management Technique Analysis. IEEE Trans Veh Tech 47(4):1329–1341, November 1998.CrossRefGoogle Scholar
  19. (19).
    Del Re E, Fantacci R, Giambene G (1999) handover queuing strategies with dynamic and fixed channel allocation techniques in low earth orbit mobile satellite systems. IEEE Trans Comm 47(1):89–102, January 1999.CrossRefGoogle Scholar
  20. (20).
    Del Re E, Fantacci R, Giambene G (1999) Different queuing policies for handover requests in low earth orbit mobile satellite systems. IEEE Trans Veh Tech 48(2):448–458, March 1999.CrossRefGoogle Scholar
  21. (21).
    Mouly M and Pautet MB: The GSM System for mobile communications, ISBN 2–9507190-2–9507190.Google Scholar
  22. (22).
    Race II SAINT Project 2117, Deliverable No. 15.Google Scholar
  23. (23).
    Lutz, E (1991) The land mobile satellite communication channel - recording, statistics, and channel model. IEEE Trans Veh Tech 40(2).Google Scholar
  24. (24).
    Parks, M (1993) High elevation angle propagation results, applied to a statistical model and an enhanced empirical model. IEE Electronics Let 29(19).Google Scholar
  25. (25).
    Sammut, A (1994) Mobility management related signalling for a MAGSS-14-based satellite personal communications network (S-PCN), COST227D, NTUA, Athens Greece.Google Scholar
  26. (26).
    Meenan C (1997) Intelligent paging schemes for non-GEO satellite personal communication networks, VTC’97, Phoenix, Arizona.Google Scholar
  27. (27).
    Del Re E, Fantacci R, Giambene G et al (1994) Review of resource management strategies, R2117 satellite integration in future mobile networks. A3300 Resource Management, October 1994.Google Scholar
  28. (28).
    Jahn A (1998) Performance Evaluation of Resource Management Schemes for Non GSO Satellite Communications, EMPS98, Venice, Italy, pp 16–44,16–44 November 1998.Google Scholar
  29. (29).
    Everit D, Manfield D (1989) Performance analysis of cellular mobile communication system with dynamic channel assignment, IEEE I Select Areas Comm 7(8): 1172–1179, October 1989.CrossRefGoogle Scholar
  30. (30).
    Santos V et al (1999) Simplified maximum packing a new dynamic channel allocation technique, ECSC. Fifth CDROM proceedings, Toulouse, France, 3–5 November 1999.Google Scholar
  31. (31).
    Del Re E, Fantacci R and Giambene G (1995) Handover and dynamic channel allocation techniques in mobile cellular networks, IEEE Trans. Vehicular. Tech 44(2): 229–236, May 1995.CrossRefGoogle Scholar
  32. (32).
    Cimini LJ et al (1994) Call blocking performance for dynamic channel allocation in microcells. IEEE Trans Comm 42(8):2600–2607, August 1994.CrossRefGoogle Scholar
  33. (33).
    Aarts E, Korst J (1990) Simulated annealing and Boltzmann machines. John Wiley.Google Scholar
  34. (34).
    Kirkpatrick S, Gelatt CD Jr Vecchi MP (1983) Optimization by simulated annealing. Science 220 (4598) 671–680.MathSciNetzbMATHCrossRefGoogle Scholar
  35. (35). Google Scholar
  36. (36).
    Goldberg D (1989) Genetic algorithms. Addison-Wesley, New York, chs 1–4.zbMATHGoogle Scholar
  37. (37).
    Holland J (1992) Genetic algorithms. Scientific American, July 1992, pp 66–72.Google Scholar
  38. (38). Google Scholar
  39. (39).
    Mohorcic M et al (1995) Call blocking performance for channel allocation strategies in integrated satellite/terrestrial mobile system, mobile and personal communications. Elsevier Science, 1995, pp 163–171.Google Scholar
  40. (40).
    Jordan S, Varaiya PP (1991) Throughput in multiple service multiple resource communication networks. IEEE Trans Comm 39(8):1216–1222, August 1991.CrossRefGoogle Scholar
  41. (41). Google Scholar
  42. (42). Google Scholar
  43. (43).
    Elizondo E et al (1996) ASTROLINK system overview. Second Ka-band Utilization Conference and International Workshop on SCGI, Florence, Italy, 24–26 September 1996.Google Scholar
  44. (44).
    Leamon RG et al (1997) CYBERSTAR. Third Ka-band Utilisation Conference, Sorrento, Italy, 15–18 September 1997.Google Scholar
  45. (45). Google Scholar
  46. (46).
    Otsu T et al (1997) Ka-band satellite communication systems operating through NTT’s communication satellite N-STAR. Third Ka-band Utilisation Conference, Sorrento, Italy, 15–18 September.Google Scholar
  47. (47).
    Le Stradic B, et al (1997) The WEST project: exploiting the Ka-band spectrum to develop the global information infrastructure. Third Ka-band Utilisation Conference, Sorrento, Italy, 15–18 September 1997.Google Scholar
  48. (48).
    Losquadro G (1998) The EUROSKYWAY system for interactive multimedia operating with feed-back-aided traffic management. Seventeenth AIAA International Communications Satellite Systems Conference and Exhibition, Yokohama, Japan, 23–27 February 1998.Google Scholar
  49. (49).
    Mertzanis I et al (1999) Protocol Architectures for Satellite-ATM Broadband Networks. IEEE Comm Mag 37(3):46–54, March 1999.CrossRefGoogle Scholar
  50. (50).
    Mertzanis I et al (1998) SECOMS interworking scenario and interconnection with B-ISDN, Conference Proceedings. Third ACTS Mobile Communication Summit, Vol. 2, 8–11 June 1998, Rhodes, Greece.Google Scholar
  51. (51).
    Valadon C et al Code Division Multiple Access for Provision of Mobile Multimedia Services with a Geostationary Regenerative Payload, submitted to the IEEE JSAC.Google Scholar
  52. (52).
    Akyildiz IF, Jeong S Ho: Satellite ATM Networks: A survey. IEEE Comm Mag, July.Google Scholar
  53. (53).
    Romanow A and Floyd S: Dynamics of TCP traffic over ATM Networks, IEEE JSAC, Vol.13, No.4, May 1995.Google Scholar
  54. (54).
    ITU-T Recommendation Q.2763: B-ISDN- Signalling System No. 7, B-ISDN User Part (B-ISUP) - Formats and Codes, February 1995.Google Scholar
  55. (55).
    ETS 300 374–1: Intelligent Network (IN), Capability Set 1 (CS-1), Core Intelligent Network Application Part (INAP), Part 1: protocol Specification, September 1994.Google Scholar
  56. (56).
    Guda DK, Schilling DL, Saadawi TN: Dynamic reservation multiple access technique for data transmission via satellites, IEEE INFOCOM’82, pp 53–61.Google Scholar
  57. (57).
    Pavey CF, Price R Jr, Cummins EJ (1986) A performance evaluation of the PDAMA satellite access protocol. INFOCOM’86, April 1986, pp 580–589.Google Scholar
  58. (58).
    Kwak KS, Lim KJ (1995) A modified PDAMA protocol for mobile satellite communications systems, IEEE JSAC, VOL.13, N0.2, February 1995.Google Scholar
  59. (59).
    Bohm S et al (1994) Analysis of a movable Boundary access technique for a multiservice multibeam satellite system, International Journal Of Satellite Communications, VOL.12, 299–312,1994.CrossRefGoogle Scholar
  60. (60).
    Le Ngoc T, Krishnamurthy SV (1996) Performance of combined free/demand assignment multiple-access in satellite communications, Int J Sat Comm VOL.14,11–21,1996.CrossRefGoogle Scholar
  61. (61).
    Ha TT (1990) Digital satellite communications, 2nd edn, McGraw Hill. Ch 7.Google Scholar
  62. (62).
    Ors T, Sun Z and Evans BG (1998) An adaptive random-reservation MAC protocol to guarantee QoS for ATM over satellite, Broadband Communications: the future of telecommunications (IFIP TC6/WG6.2. Fourth International Conference on Broadband Communications, Stuttgart-Germany, pp 107–119,107–119 April 1998.Google Scholar
  63. (63).
    Ors T (1998) Traffic and congestion control for ATM over satellite to provide QoS. PhD thesis, University of Surrey, December 1998.Google Scholar
  64. (64).
    Peyravi H (1999) Medium access control protocols performance in satellite communications. IEEE Comm Mag, March 1999.Google Scholar
  65. (65).
    Mertzanis I et al (1998) Satellite-ATM networking and call performance evaluation for multimedia broadband services. Fourth Ka-band Utilization Conference proceedings, 2–4 November 1998, Venice, Italy.Google Scholar
  66. (66).
    Connors DP, Ryu B, Dao S (1999) Modelling and simulation of broadband satellite networks, Part I: Medium access control for QoS provisioning. IEEE Comm Mag, March 1999.Google Scholar
  67. (67).
    Gelenbe E, Mang X, Onvural R (1997) Bandwidth allocation and call admission control in high-speed networks. IEEE Comm Mag, May 1997.Google Scholar
  68. (68).
    Saito H (1997) Dynamic resource allocation in ATM networks. IEEE Comm Mag, May 1997.Google Scholar
  69. (69).
    Bolla R, Davoli F, Marchese M (1997) Bandwidth allocation and admission control in ATM networks with service separation. IEEE Comm Mag, May 1997.Google Scholar
  70. (70).
    Liu K et al (1997) Design and analysis of a bandwidth management framework for ATM -based broadband ISDN. IEEE Comm Mag, May 1997.Google Scholar
  71. (71).
    Gibbens RJ, Kelly FP, Key PB (1995) A decision-theoretic approach to call admission control in ATM networks. IEEE, JSAC 13(6), August 1995.Google Scholar
  72. (72).
    Berger AW, Whitt W (1998) Extending the effective bandwidth concept to networks with priority classes. IEEE Comm Mag, August 1998.Google Scholar
  73. (73).
    Enomoto O, Miyamoto H (1973) An analysis of mixtures of multiple bandwidth traffic on time division in switching networks. Seventh International Teletraffic Congress Proceedings, pp 635.1–8.Google Scholar
  74. (74).
    Aein JM (1978) A multi-user-class, blocked-calls-cleared demand access model. IEEE Trans Comm 26(3):378–385.zbMATHCrossRefGoogle Scholar
  75. (75).
    Roberts JW (1981) A service system with heterogeneous user requirements - application to multi-service telecommunication systems. Pujolle G (ed.) Performance of data communication systems and their applications. North Holland-Elsevier Science Publishers, pp 423–431.Google Scholar
  76. (76).
    af-tm-0056.000, ATM Forum: traffic management specification Version 4.0, April 1996.Google Scholar
  77. (77).
    Mertzanis I et al (1999) Satellite-ATM networking and call performance evaluation for multimedia broadband services (extended version), accepted for publication in Int J Sat Comm.Google Scholar
  78. (78).
    Mertzanis I (1999) QoS Provisioning for broadband satellite-ATM multimedia networks. PhD thesis, University of Surrey, July 1999.Google Scholar
  79. (79).
    Mertzanis I et al (1999) Satellite-ATM network dimensioning and ABR capacity estimation in the presence of self-similar traffic. Fifth Ka-band Utilisation Conference proceedings, Taormina, Italy 18–20 October 1999.Google Scholar
  80. (80).
    Anick D, Mitra D, Sondhi MM (1974) Stochastic theory of a data handling system with multiple sources, Bell Sys Tech J 61(8):10—18. MathSciNetGoogle Scholar
  81. (81).
    Garrett MW (1996) A service architecture for ATM: from applications to scheduling. IEEE Network, May/June 1996.Google Scholar
  82. (82).
    Maglaris B et al (1986) Performance models of statistical multiplexing in packet video communications. IEEE Trans comm 36(7), July 1986.Google Scholar
  83. (83).
    Kleinrock L (1976) Queueing systems. Vols I and II, John Wiley, ISBN 0–471-0–471 and 0–471-1976.Google Scholar
  84. (84).
    Argyropoulos Y et al (1998) GPRS delay and capacity analysis for web browsing application. ICT’98, Vol. II, Porto Carras, Greece, 21–25 June 1998.Google Scholar
  85. (85).
    Mertzanis I et al (1999) Multimedia service support for WISDOM: the satellite component of an end-to-end ATM network. Fourth ACTS Mobile Summit, 8–11 June 1999, Sorrento, Italy.Google Scholar
  86. (86).
    Sammut A et al (1997) GIPSE: A global integrated personal satellite multimedia environment. Fourth European Conference on Satellite Communications (ECSC-4) Rome, 18–20 November 1997.Google Scholar
  87. (87).
    Vatalaro F, Corazza G, Caini C (1995) Analysis of LEO, MEO and GEO global mobile satellite systems in the presence of interference and fading. IEEE JSAC 13(2), February 1995.Google Scholar
  88. (88).
    Ananasso F, Carosi M (1994) Architecture and networking issues in satellite systems for personal communications, Int J Sat Comm 12:33–44.CrossRefGoogle Scholar
  89. (89).
    Akyol, Cox D (1996) Rerouting for handoff in a wireless ATM network. IEEE Pers Comm, 3(5), October 1996.Google Scholar
  90. (90).
    Levine D, Akyildiz I, Naghishineh M (1997) A resource estimation and call admission Algorithm for wireless multimedia networks using the shadow cluster concept, IEEE/ACM Trans Networking 5(1), February 1997.Google Scholar
  91. (91).
    Mertzanis I, Tafazolli R, Evans BG (1997) Performance issues and modelling of mobile executed handoffs in multispot beam dynamic satellite networks using ATM technology. IEE Colloquium in ATM traffic in the personal mobile communications environment, February 1997, London, UK.Google Scholar
  92. (92).
    Werner M (1997) A dynamic routing concept for ATM based satellite personal communication networks. IEEE, JSAC 15(8) October 1997.Google Scholar
  93. (93).
    Zhao W, Tafazolli R, Evans BG (1995) A UT positioning approach for dynamic satellite constellations, IMSC’95, Ottawa.Google Scholar
  94. (94).
    Dosiere F et al (1993) A model for the handover traffic in low earth-orbiting (LEO) satellite networks for personal communications, Int J Sat Comm 11:145–149.CrossRefGoogle Scholar
  95. (95).
    Ruiz G, Doumi TL, Gardiner JG (1996) Teletraffic analysis and simulation of mobile satellite systems. IEEE VTC’96 conference proceedings.Google Scholar
  96. (96).
    Ruiz G, Doumi TL, Gardiner JG (1998) Teletraffic analysis and simulation of mobile satellite systems. IEEE Trans Veh Tech 47(1), February 1998.Google Scholar
  97. (97).
    Hong D, Rappaport S (1986) Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and non-prioritized handoff procedures. IEEE Trans Veh tech VT-35 (3), August 1986.Google Scholar
  98. (98).
    Mertzanis I (1999) QoS provisioning for broadband satellite-ATM multimedia networks. PhD thesis, University of Surrey, July 1999.Google Scholar
  99. (99).
    Mertzanis I, Tafazolli R Evans BG (1998) A new approach for radio resource management in multimedia dynamic satellite networks. Seventeenth AIAA International Communication Satellite Systems Conference and Exhibition, Yokohama, Japan, 23–27 February 1998.Google Scholar
  100. (100).
    Roberts JW (1983) Teletraffic models for the telecom 1 integrated services network, In Tenth Int Teletraffic Congress Proceedings, Section 1.1.2: pp 522–525.Google Scholar
  101. (101).
    Jonson SA (1985) A performance analysis of integrated communications systems, British Telecom Tech J 3(4) pp 514, 517, 525, October 1985.Google Scholar
  102. (102).
    Tran-Gia P, Hubner F (1993) An analysis of trunk reservation and grade of service balancing mechanisms in multiservice broadband networks. IFIP Workshop TC6: Modelling and performance evaluation of ATM technology, Martinique, pp 517, 524, 525, 533.Google Scholar
  103. (103).
    Virtamo JT (1988) Reciprocity of blocking probabilities in multiservice loss systems, IEEE Trans Comm, 36(10):1174–1175, pp 516,517.Google Scholar
  104. (104).
    M. Werner (1996) ATM Concepts for Satellite Personal Communication Networks. Proc. European Conference on Networks and Optical Communications (NOC’96), pp 247–254, June 1996, Heidelberg, Germany.Google Scholar
  105. (105).
    Werner M, Delucchi C, Burchard K (1997) ATM networking for future ISL-based LEO satellite constellations. Proc. Fifth Int. Mobile Satellite Conference (IMSC’97), pp 295–300, Pasadena, California, June 1997.Google Scholar
  106. (106).
    Wauquiez F, Werner M (1998) Capacity dimensioning of intersatellite link networks in broadband LEO satellite systems. COST 252 TD(98)24, September 1998.Google Scholar
  107. (107).
    Kennedy MD, Malet PL (1997) Application for authority to construct, launch and operate the Celestri multimedia LEO system, Filing to FCC, Washington DC, June 1997.Google Scholar
  108. (108).
    Werner M (1997) A dynamic routing concept for ATM-Based satellite personal communication networks, IEEE JSAC 15(8):1636–1648, October 1997.Google Scholar
  109. (109).
    Papapetrou E, Gragopoulos I, Pavlidou FN (1999) Performance evaluation of LEO satellite constellations with inter-satel-lite links under self-similar and Poisson traffic. Int J Satel Comm 17: pp 51–64.CrossRefGoogle Scholar
  110. (110).
    Chang HS et al (1996) Performance comparison of static routing and dynamic routing in low earth orbit satellite networks in Proc VTC’96.Google Scholar
  111. (111).
    Ballard AH (1980) Rosette constellations of earth satellites. IEEE Transactions on Aerospace and Electronic Systems, AES-16(5):656–673, September 1980.Google Scholar
  112. (112).
    Werner M, Maral G (1997) Traffic flows and dynamic routing in LEO intersatellite link networks, in Proc. of IMSC ’97, pp 283–288, Pasadena, California, USA, June 1997.Google Scholar
  113. (113).
    IEEE Pers Comm Mag - Special issue on IMT-2000. Vol. 4(4), August 1997.Google Scholar
  114. (114).
    Abrishamkar, Siveski Z (1996) PCS global mobile satellites. IEEE Comm Mag 34(9):132–136, September 1996.CrossRefGoogle Scholar
  115. (115).
    Restrepo J, Maral G (1995) Coverage concepts for satellite constellations providing communications services to fixed and mobile users. Space Comm 13(2): 145–157.Google Scholar
  116. (116).
    Leung, Alnuweiri H, Nasiopoulos P: Interworking broadband satellite networks with terrestrial networks subsystems, University of British Columbia - Report published on WWW at the address
  117. (117).
    Goodman J et al (1989) Packet reservation multiple access for local wireless communications. IEEE Trans Comm 37:885–890, August 1989.CrossRefGoogle Scholar
  118. (118).
    Goodman J (1991) Trends in cellular and cordless communications. IEEE Comm Mag pp 31–40, June 1991.Google Scholar
  119. (119).
    Frullone: On the Performance of Packet Reservation Multiple Access with Fixed and Dynamic Channel Allocation, IEEE Trans Veh Tech 42(l):78–86, February 1993.Google Scholar
  120. (120).
    Wai-Choong Wong Dynamic Allocation of Packet Reservation Multiple access Carriers, IEEE Trans Veh Tech 42(4)385–392, November 1993.Google Scholar
  121. (121).
    Yalun Li, Steinar Andersen Boning Feng (1995) On the performance analysis of EPRMA protocol with Markov chain model. Proc of GLOBECOM ’95,13 November Singapore, pp 1502–1506.Google Scholar
  122. (122).
    Koh, Liu MT (1996) A wireless multiple access control protocol for voice-data integration. Proc Int Conf Parallel and Dist Sys, June 1996, Tokyo, Japan, pp 206–213.Google Scholar
  123. (123).
    Nanda D, Goodman J, Timor U (1991) Performance of PRMA: a packet voice protocol for cellular systems. IEEE Trans Veh Tech 40(3):584–598, August 1991.CrossRefGoogle Scholar
  124. (124).
    Del Re E, et al (1997) Performance Evaluation of an Improved PRMA Protocol for Low Earth Orbit Mobile Communication Systems, Int J Sat Comm 15: pp 281–291.CrossRefGoogle Scholar
  125. (125).
    Del Re E, et al (1999) Performance analysis of an improved PRMA protocol for low earth orbit mobile satellite systems. IEEE Trans Veh Tech 48(3):985–1001, May 1999.CrossRefGoogle Scholar
  126. (126)).
    Corovesis, Venieri D: New User and Service Requirements, INSURED Project (AC229).Google Scholar
  127. (127).
    Del Re E, et al (1998) Performance evaluation of the PRMA protocol for voice and data transmissions in low earth orbit mobile communication systems, 252TD(98)17, COST 252/259 Joint Workshop, University of Bradford, 21–22 April 1998.Google Scholar
  128. (128).
    Sen, G. Karlsson, B. Maglaris, D. Anastassiou and J. D. Robbins: Packet Models of Statistical Multiplexing in Packet Video Communications, IEEE Trans, on Comm., Vol. 36, pp 834–843, August 1988.Google Scholar
  129. (129).
    Giroux, Ganti S (1999) Quality of Service in ATM Networks, Prentice Hall, ch. 5, pp 85–119.Google Scholar
  130. (130).
    Zhang: Service Disciplines for Guaranteed Performance Service in Packet-Switching Networks, Proc. IEE, Vol. 83, pp 1374–1396, October 1995.Google Scholar
  131. (131).
    Saito: (1994) Teletraffic technologies in ATM networks. Artech House, ch 3, pp 71–98.Google Scholar
  132. (132).
    Hung, Montpetit MJ, Kesidis G (1998) ATM via satellite: a framework and implementation. ACM-Baltzer Wireless Networks, 4(2):141–153.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2002

Authors and Affiliations

  • A. Sammut
    • 1
  • I. Mertzanis
    • 1
  • C. Meenan
    • 1
  • G. Sfikas
    • 1
  • E. Del Re
    • 2
  • R. Fantacci
    • 2
  • G. Giambene
    • 2
  • V. Santos
    • 3
  • M. Dinis
    • 3
  • J. Neves
    • 3
  • M. Werner
    • 4
  • J. Bostic
    • 4
  • C. Delucchi
    • 4
  • M. Mohorcic
    • 5
  • A. Svigelj
    • 5
  • G. Kandus
    • 5
  1. 1.University of SurreyUK
  2. 2.Università degli Studi di FirenzeItaly
  3. 3.Instituto de TelecomunicaçōesBrazil
  4. 4.Deutsches Zentrum für Luft- und Raumfahrt (DLR)Germany
  5. 5.Institut Jozef StefanSlovenia

Personalised recommendations