Soft Data Fusion in Image Processing

  • Aureli Soria-Frisch


Data fusion is a long term of research in image processing that is becoming more and more relevant owing to the complementary developments of computer and sensory technologies. Although operator research related to soft-computing, specially in the field of fuzzy systems, has evolved considerably during this last two decades, implemented frameworks of data fusion for image processing take seldom into consideration this kind of operators. Most of pattern recognition systems with image fusion are still based in basic operators, e.g. minimum or product. The purpose of the here presented tutorial is to analyze this fact, present some of the fuzzy aggregation operators in the context of data fusion for image processing and show some applications where the usage of the fuzzy integral, one of these operators, increased the performance of image processing systems considering data fusion.


Input Image Data Fusion Aggregation Operator Fuzzy Measure Order Weight Average 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.A. Abidi, R.C. Gonzalez, eds. (1992). Data Fusion in Robotics and Machine Intelligence. San Diego: Academic Press.MATHGoogle Scholar
  2. 2.
    F. Alkoot and J. Kittler (2000). Improving the performance of the Product Fusion Strategy. Proc. 15th International Conference on Pattern Recognition, 1CPR’2000, Barcelona, Catalonia.Google Scholar
  3. 3.
    N. Ayache, O. Faugueras (1989). Maintaining representations of the environment of a mobile robot. IEEE Trans. Robotics and Automatation, Vol. 5, No. 6:804–819.CrossRefGoogle Scholar
  4. 4.
    W.G.K. Backhaus, R. Kliegl and J.S. Werner eds. (1998). Color Vision: Perspectives from Different Disciplines. Berlin: Walter de Gruyter.Google Scholar
  5. 5.
    G. Beliakov (2000) Aggregation operators as similarity relations. In Information, Uncertainty and Fusion, B. Bouchon-Menier et al. eds. Boston: Kluwer Academic Publishers.Google Scholar
  6. 6.
    S. Beucher (1982). Watersheds of functions and picture segmentation. IEEE Int. Conf on Acoustics, Speech and Signal Processing, Paris, 1928–1931.Google Scholar
  7. 7.
    L. Bogoni (2000). Extending Dynamic Range of Monochrome and Color Images through Fusion. Proc. Int. Conf Pattern Recognition, ICPR’2000, Vol. 3: 7–12.Google Scholar
  8. 8.
    A. Elfes (1992). Multi-source Spatial Data Fusion Using Bayesian Reasoning. In [I]: 137–164.Google Scholar
  9. 9.
    A. Filippidis, L.C. Jain, N. Martin (2000). Fusion of Intelligent Agents for the Detection of Aircraft in SAR Images. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 22, No.4: 378–384.CrossRefGoogle Scholar
  10. 10.
    M. Grabisch, H.T. Nguyen and E.A. Walker (1995). Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference, Kluwer Ac. Pub.Google Scholar
  11. 11.
    M. Grabisch (1997). Fuzzy Measures and Integrals for Decision Making and Pattern Recognition. Fuzzy Structures: Current Trends (R. Mesiar et al. eds.), TATRA MOUNTAINS Mathematical Publications.Google Scholar
  12. 12.
    S.A. Hutchinson, A.C. Kak (1992). Multisensor Strategies Using Dempster-Shafer Belief Accumulation. In [I]: 165–209.Google Scholar
  13. 13.
    G.J. Klir, Z. Wang and D. Harmanec (1997). Constructing Fuzzy Measures in Expert systems. Fuzzy sets and Systems, 92: 251–264.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    M. Köppen, C. Nowack and G. Rsel (1999). Pareto-Morphology for Color Image Processing. Proc. of the 11th Scandinavian Conference in Image Analysis, Greenland, Denmark.Google Scholar
  15. 15.
    M. Koppen, K. Franke, O. Unold (2000). A survey on fuzzy morphology. Proc. PRIA-5: 424–427, Samara, Russia.Google Scholar
  16. 16.
    R. Krishnamoorti and P. Bhattacharya (1998). Color Edge Extraction Using Orthogonal Polynomials Based Zero Crossings Scheme. Information Sciences, 112,51–65.MathSciNetCrossRefGoogle Scholar
  17. 17.
    H. Li, B.S. Manjunath and S.K. Mitra (1995). Multisensor Image Fusion Using the Wavelet Transform. Graphical Models and Image Processing, 57(3): 235–245.CrossRefGoogle Scholar
  18. 18.
    R.C. Luo and M.G. Kay eds. (1995). Multisensor Integration and Fusion for Intelligent machines and systems. Norwood, NJ: Ablex Publishing Corporation.Google Scholar
  19. 19.
    G. Medioni et a. (2001). Event Detection and Analysis from Video Streams. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 23, No.8: 873–889.CrossRefGoogle Scholar
  20. 20.
    Y. Miyamoto et al. (1996). Development of ‘AI-VISION’ for fluidized-bed incinerator. Proc. IEEE/SICE/RSJ Int. Conf Multisensor Fusion and Integration for Intelligent Systems: 72–77.Google Scholar
  21. 21.
    T. Murofushi and M. Sugeno (1991). Fuzzy t-conorm integrals with respect to fuzzy measures: generalization of Sugeno integral and Choquet integral. Fuzzy Sets and Systems, 42: 57–71.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    N. Nandhakumar (1994). Robust physics-based analysis of thermal and visual imagery. Journal of the Opt. Soc. Am. A, 1994: 2981–2989.Google Scholar
  23. 23.
    S.-C. Pei and C.-M. Cheng (1999). Color Image Processing by Using Binary Quaternion-Moment-Preserving Thresholding Technique. IEEE Trans. On Image Processing, 8(5) 614–629.CrossRefGoogle Scholar
  24. 24.
    J.L. Pech-Pacheco et al. (2000). Diatom auto focusing in bright field microscopy: a comparative study. Proc. Int. Conf. Pattern Recognition, ICPR’2000, Vol. 3: 318–325. 25. l Porrill (1988). Optimal Combination and Constraints for Geometrical Sensor Data. Int. J of Robotics Research, Vol. 7, No.6: 66–77.Google Scholar
  25. 26.
    H. Quiu, J. Keller (1987). Multispectral image segmentation using fuzzy techniques. Proc. North American Fuzzy Information Processing Society, May 1987: 374–387.Google Scholar
  26. 27.
    R.A. Salinas, C. Richardson, M.A. Abidi and R.C. Gonzalez (1996). Data Fusion: Color Edge Detection and Surface Reconstruction Through Regularization. IEEE Trans. on Industrial Electronics, 43(3): 355–363.CrossRefGoogle Scholar
  27. 28.
    J. Ruiz-del-Solar and A. Soria-Frisch (2000). Bio-inspired color vision for the fusion of chromatic, infrared and textural image information. Proc. 2nd International ICSC Symposium on Neural Computation NC2000: 786–792, Berlin, Germany.Google Scholar
  28. 29.
    A. Soria-Frisch (2000). Intelligent Localized Fusion Operators for Color Edge Detection. Proc. 12th Scandinavian Conference on Image Analysis, SCIA 2001: 177–184, Bergen, Norway.Google Scholar
  29. 30.
    A. Soria-Frisch (2001). A New Paradigm for Fuzzy Aggregation in Multisensory Image Processing. In Computational Intelligence: Theory and Applications. Proc. Int. Conf 7th Fuzzy Days: 59–67, Dortmund Germany.Google Scholar
  30. 31.
    A. Soria-Frisch and M. Koppen (2001). Fuzzy Color Morphology based on the Fuzzy Integral. In Proc. International ICSC Congress on Computational Intelligence: Methods and Applications, CIMA’2001: 732–737, Bangor, Wales, United Kingdom.Google Scholar
  31. 32.
    A. Soria-Frisch (2002). Avoidance of Highlights through ILFOs in Automated Visual Inspection. To appear in edited volume Fuzzy Filters for Image Processing of the International Series Studies in Fuzziness and Soft Computing, Heidelberg: Springer Verlag.Google Scholar
  32. 33.
    M. Sugeno (1974). Theory of Fuzzy Integral and its applications. Ph.D. thesis.Google Scholar
  33. 34.
    P. Sussner (2000). Observations on morphological associative memories and the kernel method. Neurocomputing 31: 167–183.CrossRefGoogle Scholar
  34. 35.
    H. Tahani and J. Keller (1990). Information Fusion in Computer Vision Using the Fuzzy Integral. IEEE Trans. Systems, Man and Cybernetics, 20(3): 733–741.CrossRefGoogle Scholar
  35. 36.
    H.R. Tizhoosh (1998). Fuzzy Bildverarbeitung. Heidelberg: Springer-Verlag (in german).MATHCrossRefGoogle Scholar
  36. 37.
    P.E. Trahanias, I. Pitas and A.N. Venetsanopoulus (1994). Color Image Processing. Control and Dynamic Systems, Nr. 67: Digital Image Processing. Academic Press.Google Scholar
  37. 38.
    Z. Wang and G.I. Klir (1992). Fuzzy Measure Theory, Plenum Press.Google Scholar
  38. 39.
    S. Weber (1984). ⊥-Decomposable measures and integrals for Archimidean t-conorms ⊥. J Mathematical Analysis and Applications, Vol. 101: 114–138.MATHCrossRefGoogle Scholar
  39. 40.
    P. Weckesser, R. Dillmann (1996). Sensor-Fusion of Intensity-and Laserrange-Images. Proc. IEEE/SICE/RSJ Int. Conf Multisensor Fusion and Integration for Intelligent Systems: 501–508.Google Scholar
  40. 41.
    R.R. Yager and A. Kelman (1996). Fusion of Fuzzy Information With Considerations for Compatibility, Partial Aggregation, and Reinforcement. Int. J of Approximate Reasoning, 15:93–122.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2002

Authors and Affiliations

  • Aureli Soria-Frisch
    • 1
  1. 1.Dept. Pattern RecognitionFraunhofer IPKBerlinGermany

Personalised recommendations