Genetic Algorithms for the Assembly Line Balancing Problem: A Real-World Automotive Application

  • Solivan Arantes Valente
  • Heitor Silvério Lopes
  • Lúcia Valéria R. de Arruda

Abstract

This paper reports the use of Genetic Algorithms (Gas) to solve the assembly line balancing problem in a real-world application: a car assembly facility. The problem is modeled and a standard GA is applied. The line layout solution found by GA reduces by 28.5% the total assembly time of the current line layout, which implies in a significant reduction of costs. This result suggests that the use of GAs in real-world industrial problems can be very promising.

Keywords

Lime Production Line Paral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, E.J. & Ferris, M.C. (1994). Genetic algorithms for combinatorial optimization: the assembly line balancing problem.ORSA Journal of Computing, vol. 6, no. 2, pp. 161–173.MATHCrossRefGoogle Scholar
  2. 2.
    Chan, W.T. & Hu, H. (2000). Precast production scheduling with genetic algorithms. Proc. of 2000 Congress on Evolutionary Computation, vol. 2, pp. 1087–1094.Google Scholar
  3. 3.
    Goldberg, D.E. (1989).Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley.Google Scholar
  4. 4.
    Goodman, E.D. (1996). An Introduction to Galopps — The Genetic ALgorithm Optimized for Portability and Parallelism System.Technical Report #96–07–01, Michigan StateUniversity, East Lansing.Google Scholar
  5. 5.
    Knosala, R. & Wal, T. (2001). A production scheduling problem using genetic algorithms.Journal of Materials Processing Technology, vol. 109, no. 1-2,pp. 90–95.CrossRefGoogle Scholar
  6. 6.
    Kopfer, H. (1996).Evolutionary search and the job shop: investigations on genetic algorithms for production scheduling. Heidelberg: Physica-Verlag.Google Scholar
  7. 7.
    Li, H. & Love, P. (1998) Site-level facilities layout using genetic algorithms.Journal of Computing in Civil Engineering,vol. 12, no. 4, pp. 227–231.CrossRefGoogle Scholar
  8. 8.
    Li, Y. & Ip, W.H. & Wang, D.W. (1998) Genetic algorithm approach to earliness and tardiness production scheduling and planning problem.International Journal of Production Economics, vol. 54, no. 1, pp. 65–76.CrossRefGoogle Scholar
  9. 9.
    Nakano, R. (1991). Conventional genetic algorithm for job shop problems.Proc. of the 4th International Conference on Genetic Algorithms, pp. 474–479.Google Scholar
  10. 10.
    Reeves, C.R. (1995). A genetic algorithm for flow shop sequencing.Computers in Operations Research, vol. 22,no. 1, pp. 5–13.MATHCrossRefGoogle Scholar
  11. 11.
    Warwick, T. & Tsang, E.P.K. (1996). Tackling car-sequencing problems using a generic genetic algorithm.Evolutionary Computation, vol.3, no 3, pp. 267–298.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2002

Authors and Affiliations

  • Solivan Arantes Valente
    • 1
  • Heitor Silvério Lopes
    • 2
  • Lúcia Valéria R. de Arruda
    • 2
  1. 1.UnicenP - Centro Universitario PositivoCuritibaBrazil
  2. 2.CEFET-PR - Centro Federal de Educação Tecnológica do ParanáCuritibaBrazil

Personalised recommendations