Skip to main content

Abstract

In Chapter 2, we introduced a series of examples of how cartography selects and depicts terrestrial, celestial, and human biological features of physical phenomena. Geographic and oceanographic maps help us to find our way on land and sea. Star maps help us to explore the universe. In this chapter, we turn our attention inwards and explore the design of mind maps, maps that represent our thought, our experience, and our knowledge. In traditional cartography, a thematic map always has a base map and a thematic overlay. For many physical phenomena, a geographic map is probably the best base map we may ever have: intuitive, solid, and real. Now we want to produce a map of the mind. In this category of phenomena, a geographic connection may no longer be valid. A geographic base map cannot be taken for granted. What metaphor do we use to hold something as fluid as our thought together? What are the design principles in constructing a metaphoric base map that can adequately represent what is by its nature invisible, intangible, and intractable?

The eyes are not responsible when the mind does the seeing.

Publilius Syrus (c. 85–43 BC)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abello, J, Pardalos, PM, and Resende, MGC (1999). On maximum clique problems in very large graphs. In: J Abello and J Vitter (eds), External Memory Algorithms. American Mathematical Society, pp. 119–30.

    Google Scholar 

  • Albert, A, Jeong, H, and Barabási, A-L (1999). Diameter of the World Wide Web. Nature, 401, 130–1. Albert, R, Jeong, H, and Barabási, A-L (2000). Attack and error tolerance in complex networks.Nature, 406, 378–82.

    Article  Google Scholar 

  • lbert, R, Jeong, H, and Barabási, A-L (2000). Attack and error tolerance in complex networks.Nature, 406, 378–82.

    Article  Google Scholar 

  • Barabási, A-L, Albert, R, Jeong, H, and Bianconi, G (2000). Power-law distribution of the World Wide Web. Science, 287, 2115a.

    Article  Google Scholar 

  • Basalaj, W (2001). Proximity visualization of abstract data. Technical Report 509, University of Cambridge Computer Laboratory, January 2001. http://www.pavis.org/essay/index.html

    Google Scholar 

  • Batagelj, V, and Mrvar, A (1998). Pajek: a program for large network analysis. Connections, 21(2),47–57.

    Google Scholar 

  • Biglan, A (1973). The characteristics of subject matter in different academic areas. Journal of Applied Psychology, 57, 195–203.

    Article  Google Scholar 

  • Borg, I, and Groenen, P (1997). Modern Multidimensional Scaling. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Botafogo, R, Rivlin, E, and Shneiderman, B (1992). Structural analysis of hypertexts: Identifying hierarchies and useful metrics, ACM Transactions on Information Systems, 10(2), 142–180.

    Article  Google Scholar 

  • Burt, RS (1992). Structural Holes: The Social Structure of Competition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Burt, RS (2002). The social capital of structural holes. In: NF Guillen, R Collins, P England and M Meyer (eds), The New Economic Sociology: Development in an Emerging Field. New York:Russell Sage Foundation.

    Google Scholar 

  • Bush, V (1945). As we may think. Atlantic Monthly, 176(1), 101–8.

    Google Scholar 

  • Canter, D, Rivers, R, and Storrs, G (1985). Characterizing user navigation through complex data structures. Behaviour and Information Technology, 4(2), 93–102.

    Article  Google Scholar 

  • Chen, C, and Czerwinski, M (1997). Spatial ability and visual navigation: an empirical study. New Review of Hypermedia and Multimedia, 3, 67–89.

    Article  Google Scholar 

  • Collins, AM, and Quillian, MR (1969). Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior, 8, 240–8.

    Article  Google Scholar 

  • Conklin, J (1987). Hypertext: an introduction and survey. IEEE Computer, 20(9), September, 17–41.

    Google Scholar 

  • Darken, RP, Allard, T, and Achille, LB (1998). Spatial orientation and wayfinding in large-scale virtual spaces: an introduction. Presence, 7(2), 101–7.

    Article  Google Scholar 

  • Donoho, D, and Ramos, E (1982). PRIMDATA: Data sets for use with PRIM-H (retrieved 5 November 2001). http://lib.stat.cmu.edu/data-expo/1983.html

    Google Scholar 

  • Everitt, BS (1980). Cluster Analysis. New York: Halsted Press.

    MATH  Google Scholar 

  • Everitt, BS, and Rabe-Hesketh, S (1997). The Analysis of Proximity Data. London: Arnold.

    Google Scholar 

  • Granovetter, M (1973). Strength of weak ties. American Journal of Sociology, 8, 1360–80.

    Article  Google Scholar 

  • Greenacre, MJ (1993). Correspondence Analysis in Practice. San Diego, CA: Academic Press.

    Google Scholar 

  • Hayes, B (2000a). Graph theory in practice: Part I. American Scientist, 88(1), 9–13.

    Google Scholar 

  • Hayes, B (2000b). Graph theory in practice: Part II. American Scientist, 88(2), 104–9.

    Google Scholar 

  • Helm, CE (1964). Multidimensional ratio scaling analysis of perceived color relations. Journal of the Optical Society of America, 54, 256–62.

    Article  Google Scholar 

  • Ingram, R, and Benford, S (1995). Legibility enhancement for information visualisation. Proceedings of the 6th Annual IEEE Computer Society Conference on Visualization, October 1995, Atlanta, GA,USA, pp. 209–16.

    Google Scholar 

  • Kleinberg, J (1998). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5),604–32.

    Article  MathSciNet  Google Scholar 

  • Kochen, M (ed.) (1989). The Small World: A Volume of Recent Research Advances Commemorating Ithiel de Sola Pool, Stanley Milgram, Theodore Newcomb. Norwood, NJ: Ablex.

    Google Scholar 

  • Krumhansl, CL (1978). Concerning the applicability of geometric models to similar data: the interrelationship between similarity and spatial density. Psychological Review, 85(5), 445–63.

    Article  Google Scholar 

  • Kruskal, JB (1977). The relationship between multidimensional scaling and clustering. In: J van Ryzin (ed.), Classification and Clustering. New York: Academic Press, pp. 17–44.

    Google Scholar 

  • Kruskal, JB, and Wish, M (1978). Multidimensional Scaling. Beverly Hills, CA: SAGE Publications.

    Google Scholar 

  • Levine, M, Jankovic, IN, and Palij, M (1982). Principles of spatial problem solving. Journal of Experimental Psychology: General, 111(2), 157–75.

    Article  Google Scholar 

  • Levine, M, Marchon, I, and Hanley, G (1984). The placement and misplacement of You-Are-Here maps. Environment and Behavior, 16(2), 139–57.

    Article  Google Scholar 

  • Lynch, K (1960). The Image of the City. Cambridge, MA: MIT Press.

    Google Scholar 

  • McCallum, RC (1974). Relations between factor analysis and multidimensional scaling. Psychological Bulletin, 81(8), 505–16.

    Article  Google Scholar 

  • Milgram, S (1967). The small world problem. Psychology Today, 2, 60–7.

    Google Scholar 

  • Miller, GA (1969). A psychological method to investigate verbal concepts. Journal of Mathematical Psychology, 6, 169–91.

    Article  Google Scholar 

  • Morris, TA, and McCain, K (1998). The structure of medical informatics journal literature. Journal of the American Medical Informatics Association, 5(5), 448–66.

    Article  Google Scholar 

  • Rapoport, A, and Horvath, WJ (1961). A study of a large sociogram. Behavioural Science, 6(4), 279–91.

    Article  Google Scholar 

  • Roweis, ST, and Saul, LK (2000). Nonlinear dimensionality reduction by locally linear embedding.Science, 290(5500), 2323–6.

    Article  Google Scholar 

  • Small, H (1986). The synthesis of specialty narratives from co-citation clusters. Journal of the American Society for Information Science, 37(3), 97–110.

    Google Scholar 

  • Small, H (2000). Charting pathways through science: exploring Garfield’s vision of a unified index to science. In: B Cronin and HB Atkins (eds), Web of Knowledge - A Festschrift in Honor of Eugene Garfield. Washington: ASIST, pp. 449–73.

    Google Scholar 

  • Steyvers, M (2000). Multidimensional scaling. In: Encyclopedia of Cognitive Science. London:Macmillan Reference.

    Google Scholar 

  • Steyvers, M, and Tenenbaum, J (2001). Small worlds in semantic networks (retrieved December 2001).http://www-psych.stanford.edu/~msteyver/small_worlds.htm

    Google Scholar 

  • Tenenbaum, JB, Silva, Vd, and Langford, JC (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–23.

    Article  Google Scholar 

  • Thorndyke, P, and Hayes-Roth, B (1982). Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology, 14, 560–89.

    Article  Google Scholar 

  • Tolman, EC (1948). Cognitive maps in rats and men. Psychological Review, 55, 189–208.

    Article  Google Scholar 

  • Trochim, W (1989). Concept mapping: soft science or hard art? Evaluation and Program Planning, 12,87–110.

    Article  Google Scholar 

  • Trochim, W (1993). Reliability of concept mapping. Paper presented at the Annual Conference of the American Evaluation Association, Dallas, Texas. November, 1993. Available at http://trochim.human.cornell.edu/research/reliable/reliable.htm

    Google Scholar 

  • Trochim, W, and Linton, R (1986). Conceptualization for evaluation and planning. Evaluation and Program Planning, 9, 289–308.

    Article  Google Scholar 

  • Trochim, W, Cook, J, and Setze, R (1994). Using concept mapping to develop a conceptual framework of staffs views of a supported employment program for persons with severe mental illness.Consulting and Clinical Psychology, 62(4), 766–75.

    Article  Google Scholar 

  • Tversky, A (1977). Features of similarity. Psychological Review, 84(4), 327–52.

    Article  Google Scholar 

  • Watts, DJ (1999). Small Worlds: The Dynamics of Networks between Order and Randomness.Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Watts, DJ, and Strogatz, SJ (1998). Collective dynamics of “small-world” networks. Nature, 393, 440.

    Article  Google Scholar 

  • Zahn, CT (1917). Graph-theoretical methods for detecting and describing Gestalt clusters. IEEE Transactions on Computers, C20, 68–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag London Limited

About this chapter

Cite this chapter

Chen, C. (2003). Mapping the Mind. In: Mapping Scientific Frontiers: The Quest for Knowledge Visualization. Springer, London. https://doi.org/10.1007/978-1-4471-0051-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0051-5_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-494-9

  • Online ISBN: 978-1-4471-0051-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics