Advertisement

Algorithms for Computational Biomechanics of the Brain

  • A. WittekEmail author
  • G. Joldes
  • K. Miller
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Modeling of the brain responses due to injury-causing transients and surgery is a problem of continuum mechanics that involves irregular geometry, complex loading and boundary conditions, non-linear materials, and large deformations (see Chaps. 5 and 6). Finding a solution for such a problem requires computational algorithms of non-linear continuum mechanics.

Keywords

Hexa Expense 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The financial support of the Australian Research Council (grants no. DP0343112, DP0664534, DP1092893 and LX0560460) and NIH (grant no. R03-CA126466-01A1) is greatly acknowledged.

We thank our collaborators Dr Ron Kikinis and Dr Simon K. Warfield of Harvard Medical School (Boston, MA, USA), and Dr Kiyoyuki Chinzei and Dr Toshikatsu Washio of Surgical Assist Technology Group of AIST (Tsukuba, Japan) for help in various aspects of this work.

References

  1. 1.
    Fressmann, D., Munz, T., Graf, O., et al.: FE human modelling in crash – aspects of the numerical modelling and current applications in the automotive industry. LS-DYNA Anwenderforum. DYNAmore GmbH, Frankthenhal, Germany, pp. F-I-23–F-I-34 (2007)Google Scholar
  2. 2.
    Takhounts, E.G., Eppinger, R.H., Campbell, J.Q., et al.: On the development of the SIMon finite element head model. Stapp Car Crash J. 47, 107–133 (2003)Google Scholar
  3. 3.
    Hallquist, J.O.: LS-DYNA Theory Manual. Livermore Software Technology Corporation, Livermore (2005)Google Scholar
  4. 4.
    PSI: Pam-System Programs in Applied Mechanics. PAM-CRASH, PAM-SAFE Version 1998. Release Note. ESI Group Software Product Company (1998)Google Scholar
  5. 5.
    Mecalog: RADIOSS Users’ Manual, Paris, France (1994)Google Scholar
  6. 6.
    Baumann, R., Glauser, D., Tappy, D., et al.: Force feedback for virtual reality based minimally invasive surgery simulator. Stud. Health Technol. Inform. 29, 564–579 (1996)Google Scholar
  7. 7.
    Cover, S.A., Ezquerra, N.F., O’Brien, J.F., et al.: Interactively deformable models for surgery simulation. IEEE Comput. Graph. Appl. 13, 68–75 (1993)CrossRefGoogle Scholar
  8. 8.
    Kühnapfel, U., Çakmak, H.K., Maaß, H.: Endoscopic surgery training using virtual reality and deformable tissue simulation. Comput. Graph. 24, 671–682 (2000)CrossRefGoogle Scholar
  9. 9.
    Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. Vis. Comput. 16, 437–452 (2000)zbMATHCrossRefGoogle Scholar
  10. 10.
    Bathe, K.-J.: Finite Element Procedures. Prentice-Hall, New Jersey (1996)Google Scholar
  11. 11.
    Bro-Nielsen, M.: Finite element modeling in surgery simulation. Proc. IEEE 86, 490–503 (1998)CrossRefGoogle Scholar
  12. 12.
    Bro-Nielsen, M., Cotin, S.: Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graphics Forum 15, 57–66 (1996)CrossRefGoogle Scholar
  13. 13.
    DiMaio, S.P., Salcudean, S.E.: Interactive simulation of needle insertion models. IEEE Trans. Biomed. Eng. 52, 1167–1179 (2005)CrossRefGoogle Scholar
  14. 14.
    Warfield, S.K., Talos, F., Tei, A., et al.: Real-time registration of volumetric brain MRI by biomechanical simulation of deformation during image guided neurosurgery. Comput. Vis. Sci. 5, 3–11 (2002)zbMATHCrossRefGoogle Scholar
  15. 15.
    Roberts, D.W., Hartov, A., Kennedy, F.E., et al.: Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery 43, 749–758 (1998)CrossRefGoogle Scholar
  16. 16.
    Miller, K., Wittek, A.: Neuroimage registration as displacement – zero traction problem of solid mechanics (lead lecture). In: Miller, K., Poulikakos, D. (eds.) Proc. of Computational Biomechanics for Medicine I. Workshop affiliated with Medical Image Computing and Computer-Assisted Intervention MICCAI 2006, Copenhagen, Denmark, 1st October p. 2–13, Samfundslitteratur Grafik, Copenhagen, ISBN 10: 87-7611-149-0 (2006)Google Scholar
  17. 17.
    Wittek, A., Hawkins, T., Miller, K.: On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomech. Model. Mechanobiol. 8, 77–84 (2009)CrossRefGoogle Scholar
  18. 18.
    Belytschko, T.: A survey of numerical methods and computer programs for dynamic structural analysis. Nucl. Eng. Des. 37, 23–34 (1976)CrossRefGoogle Scholar
  19. 19.
    Bathe, K.-J.: Crush simulation of cars with FEA. Mechanical engineering http://www.memagazine.org/backissues/november98/features/crushcar.html (1998)
  20. 20.
    Cook, R.D., Malkus, D.S., Plesha, M.E.: Finite elements in dynamics and vibrations. In: Concepts and Applications of Finite Element Analysis, pp. 367–428. Wiley, New York (1989)Google Scholar
  21. 21.
    Hallquist, J.O.: LS-DYNA Theoretical Manual. Livermore Software Technology Corporation, Livemore (1998)Google Scholar
  22. 22.
    Belytschko, T.: An overview of semidiscretization and time integration procedures. In: Belytschko, T., Hughes, T.J.R. (eds.) Computational Methods for Transient Analysis, vol. 1, pp. 1–66. North-Holland, Amsterdam (1983)Google Scholar
  23. 23.
    Dassault Systèmes Simulia Corp.: ABAQUS Theory Manual Version 6.5, Providence, RI, USA (2010)Google Scholar
  24. 24.
    Olovsson, L., Simonsson, K., Unosson, M.: Selective mass scaling for explicit finite element analyses. Int. J. Numer. Methods Eng. 63, 1436–1445 (2005)zbMATHCrossRefGoogle Scholar
  25. 25.
    Majumder, S., Roychowdhury, A., Subrata, P.: Three-dimensional finite element simulation of pelvic fracture during side impact with pelvis-femur-soft tissue complex. Int. J. Crashworthiness 13, 313–329 (2008)CrossRefGoogle Scholar
  26. 26.
    Hibbitt, D., Karlsson, B., Sorensen, P.: Abaqus Analysis User’s Manual Version 6.5. ABAQUS Inc., Providence, RI (2005)Google Scholar
  27. 27.
    Flanagan, D.P., Belytschko, T.: A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int. J. Numer. Methods Eng. 17, 679–706 (1981)zbMATHCrossRefGoogle Scholar
  28. 28.
    Cifuentes, A.O., Kalbag, A.: A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis. Finite Elem. Anal. Des. 12, 313–318 (1992)CrossRefGoogle Scholar
  29. 29.
    Cook, R.D., Malkus, D.S., Plesha, M.E.: Concepts and Applications of Finite Element Analysis. Wiley, New York (1989)zbMATHGoogle Scholar
  30. 30.
    Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover, Mineola (2000)zbMATHGoogle Scholar
  31. 31.
    Wittek, A., Dutta-Roy, T., Taylor, Z., et al.: Subject-specific non-linear biomechanical model of needle insertion into brain. Comput. Methods Biomech. Biomed. Eng. 11, 135–146 (2008)CrossRefGoogle Scholar
  32. 32.
    Rojek, J., Oñate, E., Postek, E.: Application of explicit FE codes to simulation of sheet and bulk metal forming processes. J. Mater. Process. Technol. 80–81, 620–627 (1998)CrossRefGoogle Scholar
  33. 33.
    Miller, K., Joldes, G., Lance, D., et al.: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Commun. Numer. Methods Eng. 23, 121–134 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Joldes, G.R., Wittek, A., Miller, K.: Non-locking tetrahedral finite element for surgical simulation. Commun. Numer. Methods Eng. 25, 827–836 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Underwood, P.: Dynamic relaxation. In: Belytschko, T., Hughes, T.J.R. (eds.) Computational Methods for Transient Analysis, vol. 1, pp. 245–265. New-Holland, Amsterdam (1983)Google Scholar
  36. 36.
    Joldes, G.R., Wittek, A., Miller, K.: Computation of intra-operative brain shift using dynamic relaxation. Comput. Meth. Appl. Mech. Eng. 198, 3313–3320 (2009)MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Hughes, T.J.R.: Analysis of transient algorithms with particular reference to stability behavior. In: Belytschko, T., Hughes, T.J.R. (eds.) Computational Methods for Transient Analysis, vol. 1, pp. 67–155. New-Holland, Amsterdam (1983)Google Scholar
  38. 38.
    Miller, K.: Biomechanics of the Brain for Computer Integrated Surgery. Publishing House of Warsaw University of Technology, Warsaw (2002)Google Scholar
  39. 39.
    Miller, K., Chinzei, K.: Mechanical properties of brain tissue in tension. J. Biomech. 35, 483–490 (2002)CrossRefGoogle Scholar
  40. 40.
    Miller, K., Chinzei, K., Orssengo, G., et al.: Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J. Biomech. 33, 1369–1376 (2000)CrossRefGoogle Scholar
  41. 41.
    Miller, K.: Constitutive modelling of abdominal organs. J. Biomech. 33, 367–373 (2000)CrossRefGoogle Scholar
  42. 42.
    Miller, K., Chinzei, K.: Constitutive modelling of brain tissue; experiment and theory. J. Biomech. 30, 1115–1121 (1997)CrossRefGoogle Scholar
  43. 43.
    Bilston, L.E., Liu, Z., Phan-Tien, N.: Linear viscoelastic properties of bovine brain tissue in shear. Biorheology 34, 377–385 (1997)CrossRefGoogle Scholar
  44. 44.
    Margulies, S.S., Thibault, L.E., Gennarelli, T.A.: Physical model simulations of brain injury in the primate. J. Biomech. 23, 823–836 (1990)CrossRefGoogle Scholar
  45. 45.
    Bonet, J., Burton, A.J.: A simple averaged nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications. Commun. Numer. Methods Eng. 14, 437–449 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Bonet, J., Marriott, H., Hassan, O.: An averaged nodal deformation gradient linear tetrahedral element for large strain explicit dynamic applications. Commun. Numer. Methods Eng. 17, 551–561 (2001)zbMATHCrossRefGoogle Scholar
  47. 47.
    Zienkiewicz, O.C., Rojek, J., Taylor, R.L., et al.: Triangles and tetrahedra in explicit dynamic codes for solids. Int. J. Numer. Methods Eng. 43, 565–583 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Dohrmann, C.R., Heinstein, M.W., Jung, J., et al.: Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes. Int. J. Numer. Methods Eng. 47, 1549–1568 (2000)zbMATHCrossRefGoogle Scholar
  49. 49.
    Joldes, G.R., Wittek, A., Miller, K.: An efficient hourglass control implementation for the uniform strain hexahedron using the total Lagrangian formulation. Commun. Numer. Methods Eng. 24, 315–323 (2008)MathSciNetGoogle Scholar
  50. 50.
    Hallquist, J.O., Goudreau, G.L., Benson, D.J.: Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput. Meth. Appl. Mech. Eng. 51, 107–137 (1985)MathSciNetADSzbMATHCrossRefGoogle Scholar
  51. 51.
    Doghri, I., Muller, A., Taylor, R.L.: A general three-dimensional contact procedure for implicit finite element codes. Eng. Comput. 15, 233–259 (1998)zbMATHCrossRefGoogle Scholar
  52. 52.
    Stewart, J.R., Gullerud, A.S., Heinstein, M.W.: Solution verification for explicit transient dynamics problems in the presence of hourglass and contact forces. Comput. Meth. Appl. Mech. Eng. 195, 1499–1516 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. 53.
    Sauvé, R.G., Morandin, G.D.: Simulation of contact in finite deformation problems – ­algorithm and modelling issues. Int. J. Mech. Mater. Des. 1, 287–316 (2004)CrossRefGoogle Scholar
  54. 54.
    Joldes, G., Wittek, A., Miller, K., et al.: Realistic and efficient brain-skull interaction model for brain shift computation. In: Miller, K., Nielsen, P.M.F. (eds.) Proceedings of Computational Biomechanics for Medicine III. Workshop affiliated with International Conference on Medical Image Computing and Computer-Assisted Intervention MICCAI 2008, New York, USA, pp. 95–105, September 2008Google Scholar
  55. 55.
    Belytschko, T., Krongauz, Y., Organ, D., et al.: Meshless methods: an overview and recent developments. Comput. Meth. Appl. Mech. Eng. 139, 3–47 (1996)zbMATHCrossRefGoogle Scholar
  56. 56.
    Horton, A., Wittek, A., Joldes, G.R., et al.: A meshless total Lagrangian explicit dynamics algorithm for surgical simulation. Int. J. Numer. Methods Biomed. Eng. 26, 977–998 (2010)zbMATHCrossRefGoogle Scholar
  57. 57.
    Doblare, M., Cueto, E., Calvo, B., et al.: On the employ of meshless methods in biomechanics. Comput. Meth. Appl. Mech. Eng. 194, 801–821 (2005)ADSzbMATHCrossRefGoogle Scholar
  58. 58.
    Horton, A., Wittek, A., Miller, K.: Subject-specific biomechanical simulation of brain indentation using a meshless method. Proc. of International Conference on Medical Image Computing and Computer-Assisted Intervention MICCAI 2007; In Lect. Notes Comput. Sci. 4791, 541–548 (2007)CrossRefGoogle Scholar
  59. 59.
    Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)ADSCrossRefGoogle Scholar
  60. 60.
    Lee, S.-H., Darvish, K., Lobovsky, L.: Fluid-structure interaction in finite element modeling of traumatic aortic rupture. ASME Conference Proceedings ASME 2004, Advances in Bioengineering, Anaheim, CA, USA, pp. 337–338, 13–19 November 2004Google Scholar
  61. 61.
    Ionescu, I., Guilkey, J., Berzins, M., et al.: Computational simulation of penetrating trauma in biological soft tissues using the material point method. Stud. Health Technol. Inform. 111, 213–218 (2005)Google Scholar
  62. 62.
    Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10, 307–318 (1992)zbMATHCrossRefGoogle Scholar
  63. 63.
    Owens, J.D., Luebke, D., Govindaraju, N., et al.: A survey of general-purpose computation on graphics hardware. Comput. Graphics Forum 26, 80–113 (2007)CrossRefGoogle Scholar
  64. 64.
    Joldes, G.R., Wittek, A., Miller, K.: Real-time nonlinear finite element computations on GPU – Application to neurosurgical simulation. Comput. Meth. Appl. Mech. Eng. 199, 3305–3314 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    ASME PTC 60/V&V 10: Guide for Verification and Validation in Computational Solid Mechanics. The American Society of Mechanical Engineers (ASME) Standards Committee on Verification and Validation in Computational Solid Mechanics PTC 60/V&V 10. http://cstools.asme.org/csconnect/pdf/CommitteeFiles/24816.pdf (2006)
  66. 66.
    ABAQUS: ABAQUS Theory Manual, Version 5.8. Hibbitt, Karlsson & Sorensen, Inc., Rhode Island (1998)Google Scholar
  67. 67.
    Wittek, A., Miller, K., Kikinis, R., Warfield, S.K.: Patient-specific model of brain deformation: application to medical image registration. J. Biomech. 40, 919–929 (2007)CrossRefGoogle Scholar
  68. 68.
    NVIDIA: NVIDIA’s Next Generation CUDA Compute Architecture: Fermi. NVIDIA. http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf (2009)
  69. 69.
    Horton, A., Wittek, A., Miller, K.: Computer simulation of brain shift using an element free Galerkin method. In: Middleton, J., Jones, M. (eds.) 7th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering CMBEE 2006, Antibes, France (2006)Google Scholar
  70. 70.
    Waldron, K.J., Kinzel, G.L.: Kinematics, Dynamics, and Design of Machinery. Wiley, New York (1999)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Intelligent Systems for Medicine Laboratory, School of Mechanical and Chemical EngineeringThe University of Western AustraliaCrawleyAustralia
  2. 2.Intelligent Systems for Medicine Laboratory, School of Mechanical and Chemical EngineeringThe University of Western AustraliaCrawley/PerthAustralia

Personalised recommendations