Advertisement

Dynamics of Cerebrospinal Fluid: From Theoretical Models to Clinical Applications

  • Marek CzosnykaEmail author
  • Zofia Czosnyka
  • Olivier Baledent
  • Ruwan Weerakkody
  • Magdalena Kasprowicz
  • Piotr Smielewski
  • John D. Pickard
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Modeling of cerebrospinal fluid (CSF) circulation usually differs from models of brain tissue deformation. Hydrodynamics of CSF and its links with cerebral blood flow (CBF) are here of interest, as opposed to displacement of anatomical structures or distribution of stress-strain in the brain tissue in deformation modeling. In clinical­ practice, dynamics of the pressure may be easily monitored (although invasively, with directly placed pressure transducers) and dynamics of CSF flow and CBF can be imaged with phase-coded MRI (PCMRI; noninvasively). These two methods have an established clinical application in diagnosis and management of diseases associated with CSF circulatory dysfunctions, like hydrocephalus of various types, idiopathic intracranial hypertension, syringomieylia, etc.

Keywords

Catheter Sine Triad Hydrocephalus Cough 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

Financial support: European Community INTERREG grant (Amiens, Cambridge).

References

  1. 1.
    Stein, S.C., Burnett, M.G., Sonnad, S.S.: Shunts in normal pressure hydrocephalus: do we place too many or too few? J. Neurosurg. 105, 815–822 (2006)CrossRefGoogle Scholar
  2. 2.
    Marmarou, A., Black, P., Bergsneider, M., et al.: International NPH Consultant Group. Guidelines for management of idiopathic normal pressure hydrocephalus: progress to date. Acta Neurochir. Suppl. 95, 237–240 (2005)CrossRefGoogle Scholar
  3. 3.
    Pickard, J.D., Spiegelhalter, D., Czosnyka, M.: Health economics and the search for shunt-responsive symptomatic hydrocephalus in the elderly. J. Neurosurg. 105, 811–814 (2006)CrossRefGoogle Scholar
  4. 4.
    Drake, J.M., Saint-Rose, C.H. (eds.): Shunt complications. In: The Shunt Book, pp. 23–92. Blackwell Science, Oxford (1995)Google Scholar
  5. 5.
    Czosnyka, M., Maksymowicz, W., Batorski, L., et al.: Comparison between classic differential and automatic shunt functioning on the basis of infusion tests. Acta Neurochir. 106, 1–8 (1990)CrossRefGoogle Scholar
  6. 6.
    Maksymowicz, W., Czosnyka, M., Koszewski, W., et al.: Post shunting improvement in hydrocephalic patients described by cerebrospinal compensatory parameters. In: Avezaat, C.J.J., van Eijndhoven, J.H.M., Maas, A.I.R., Tans, J.T.J. (eds.) Intracranial Pressure VIII, pp. 829–832. Springer, Berlin (1994)Google Scholar
  7. 7.
    Maksymowicz, W., Czosnyka, M., Koszewski, W., et al.: The role of cerebrospinal system compensatory parameters in estimation of functioning of implanted shunt system in patients with communicating hydrocephalus. Acta Neurochir. 101, 112–116 (1989)CrossRefGoogle Scholar
  8. 8.
    Petrella, G., Czosnyka, M., Keong, N., et al.: How does CSF dynamics change after shunting? Acta Neurol. Scand. 118(3), 182–188 (2008)CrossRefGoogle Scholar
  9. 9.
    Sorenson, P.S., Gjerris, F., Schmidt, J.: Resistance to CSF outflow in benign intracranial hypertension (pseudotumor cerebri). In: Gjerris, F., Borgesen, S.E., Sorensen, P.S. (eds.) Outflow of Cerebrospinal Fluid, pp. 343–55. Munskgaard, Copenhagen (1989)Google Scholar
  10. 10.
    Tans, J.T., Boon, A.J.: Study Group. How to select patients with normal pressure hydrocephalus for shunting. Acta Neurochir. Suppl. 81, 3–5 (2002)Google Scholar
  11. 11.
    Czosnyka, M., Copeman, J., Czosnyka, Z., et al.: Post-traumatic hydrocephalus: influence of craniectomy on the CSF circulation. J. Neurol. Neurosurg. Psychiatry 68, 246–247 (2000)CrossRefGoogle Scholar
  12. 12.
    May, C., Kaye, J.A., Atack, J.R., et al.: Cerebrospinal fluid production is reduced in healthy aging. Neurology 40, 500–503 (1990)Google Scholar
  13. 13.
    Davson, H., Welch, K., Segal, M.B.: The Physiology and Pathophysiology of Cerebrospinal Fluid. Churchill Livingstone, New York (1987)Google Scholar
  14. 14.
    Gjerris, F., Borgesen, S.E.: Pathophysiology of CSF circulation. In: Crockard, A., Hayward, A., Hoff, J.T. (eds.) Neurosurgery. The scientific basis of clinical practice, pp. 146–174. Blackwell Scientific, Oxford (1992)Google Scholar
  15. 15.
    Momjian, S., Owler, B.K., Czosnyka, Z., et al.: Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain 127(pt 5), 965–972 (2004)CrossRefGoogle Scholar
  16. 16.
    Stoquart-ElSankari, S., Lehmann, P., Villette, A., et al.: A phase-contrast MRI study of physio­logical cerebral venous flow. J. Cereb. Blood. Flow Metab. 29, 1208–1215 (2009)CrossRefGoogle Scholar
  17. 17.
    Bradley Jr., W.G., Whittemore, A.R., Kortman, K.E., et al.: Marked cerebrospinal fluid void: indicator of successful shunt in patients with suspected normal-pressure hydrocephalus. Radiology 178(2), 459–466 (1991)Google Scholar
  18. 18.
    Egnor, M., Zheng, L., Rosiello, A., et al.: A model of pulsations in communicating hydrocephalus. Pediatr. Neurosurg. 36(6), 281–303 (2002)CrossRefGoogle Scholar
  19. 19.
    Eide, P.K.: Intracranial pressure parameters in idiopathic normal pressure hydrocephalus patients treated with ventriculo-peritoneal shunts. Acta Neurochir. 148(1), 21–29 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Marmarou, A., Shulman, K., Rosende, R.M.: A non-linear analysis of CSF system and ­intracranial pressure dynamics. J. Neurosurg. 48, 332–344 (1978)CrossRefGoogle Scholar
  21. 21.
    Avezaat, C.J.J., Eijndhoven, J.H.M.: Cerebrospinal fluid pulse pressure and craniospinal dynamics. A theoretical, clinical and experimental study (thesis). Jongbloedrr A, The Hague (1984)Google Scholar
  22. 22.
    Sliwka, S.: A clinical system for the evaluation of selected dynamic properties of the intracranial system. PhD Thesis, Polish Academy of Sciences, Warsaw (in Polish) (1980)Google Scholar
  23. 23.
    Boon, A.J., Tans, J.T., Delwel, E.J., et al.: Dutch normal-pressure hydrocephalus study: prediction of outcome after shunting by resistance to outflow of cerebrospinal fluid. J. Neurosurg. 87(5), 687–693 (1997)CrossRefGoogle Scholar
  24. 24.
    Borgesen, S.E., Gjerris, F.: The predictive value of conductance to outflow of CSF in normal pressure hydrocephalus. Brain 105, 65–86 (1982)CrossRefGoogle Scholar
  25. 25.
    Ekstedt, J.: CSF hydrodynamic studies in man. Method of constant pressure CSF infusion. J. Neurol. Neurosurg. Psychiatry 40, 105–119 (1977)CrossRefGoogle Scholar
  26. 26.
    Frieden, H., Ekstedt, J.: Instrumentation for cerebrospinal fluid hydrodynamic studies in man. Med. Biol. Eng. Comput. 20, 167–180 (1982)CrossRefGoogle Scholar
  27. 27.
    Jurkiewicz, J., Czernicki, Z., Berdyga, J., et al.: Three-phase infusion test. Neurol. Neurochir. Pol. 28, 363–369 (1994)Google Scholar
  28. 28.
    Katzman, R., Hussey, F.: A simple constant infusion manometric test for measurement of CSF absorption. Neurology 20, 534–544 (1970)Google Scholar
  29. 29.
    Tisell, M., Edsbagge, M., Stephensen, H., et al.: Elastance correlates with outcome after endoscopic third ventriculostomy in adults with hydrocephalus caused by primary aqueductal stenosis. Neurosurgery 50, 70–76 (2002)Google Scholar
  30. 30.
    Marmarou, A., Foda, M.A., Bandoh, K., et al.: Posttraumatic ventriculomegaly: hydrocephalus or atrophy? A new approach for diagnosis using CSF dynamics. J. Neurosurg. 85(6), 1026–1035 (1996)CrossRefGoogle Scholar
  31. 31.
    Tans, J.T., Poortvliet, D.C.: Relationship between compliance and resistance to outflow of CSF in adult hydrocephalus. J. Neurosurg. 71(1), 59–62 (1989)CrossRefGoogle Scholar
  32. 32.
    Kasprowicz, M., Czosnyka, M., Czosnyka, Z., et al.: Hysteresis of the cerebrospinal pressure-volume curve in hydrocephalus. Acta Neurochir. Suppl. 86, 529–532 (2003)Google Scholar
  33. 33.
    Eide, P.K.: A new method for processing of continuous intracranial pressure signals. Med. Eng. Phys. 28(6), 579–587 (2006)CrossRefGoogle Scholar
  34. 34.
    Borgesen, S.E., Albeck, M.J., Gjerris, F., et al.: Computerized infusion test compared to steady pressure constant infusion test in measurement of resistance to CSF outflow. Acta Neurochir. 119, 12–16 (1992)CrossRefGoogle Scholar
  35. 35.
    Czosnyka, M., Batorski, L., Laniewski, P., et al.: A computer system for the identification of the cerebrospinal compensatory model. Acta Neurochir. 105, 112–116 (1990)CrossRefGoogle Scholar
  36. 36.
    Czosnyka, M., Czosnyka, Z., Momjian, S., et al.: Cerebrospinal fluid dynamics. Physiol. Meas. 25, R51–R76 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Schuhmann, M.U., Sood, S., McAllister, J.P., et al.: Value of overnight monitoring of intracranial pressure in hydrocephalic children. Pediatr. Neurosurg. 44(4), 269–279 (2008)CrossRefGoogle Scholar
  38. 38.
    Owler, B.K., Fong, K.C., Czosnyka, Z.: Importance of ICP monitoring in the investigation of CSF circulation disorders. Br. J. Neurosurg. 15(5), 439–440 (2001)CrossRefGoogle Scholar
  39. 39.
    Czosnyka, M., Whitehouse, H., Smielewski, P., et al.: Testing of cerebrospinal compensatory reserve in shunted and non-shunted patients: a guide to interpretation based on an observational study. J. Neurol. Neurosurg. Psychiatry 60, 549–558 (1996)CrossRefGoogle Scholar
  40. 40.
    Sklar, F.H., Beyer, C.W., Ramanathan, M., et al.: Servo-controlled lumbar infusions: a clinical tool for determination of CSF dynamics as a function of pressure. Neurosurgery 3, 170–178 (1978)CrossRefGoogle Scholar
  41. 41.
    Borgesen, S.E., Gjerris, F., Sorensen, S.C.: The resistance to cerebrospinal fluid absorption in humans: a method of evaluation by lumbo-ventricular perfusion, with particular reference to normal pressure hydrocephalus. Acta Neurol. Scand. 57, 88–96 (1978)CrossRefGoogle Scholar
  42. 42.
    Lundberg, N.: Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr. Scand. Suppl. 36(149), 1–193 (1960)Google Scholar
  43. 43.
    Pickard, J.D., Teasdale, G., Matheson, M., et al.: Intraventricular pressure waves – the best predictive test for shunting in normal pressure hydrocephalus. In: Shulman, K., Marmarou, A., Miller, J.D., Becker, D.P., Hochwald, D.M., Brock, M. (eds.) Intracranial Pressure IV, pp. 498–500. Springer, Berlin (1980)Google Scholar
  44. 44.
    Droste, D.W., Krauss, J.K.: Intracranial pressure B-waves precede corresponding arterial blood pressure oscillations in patients with suspected normal pressure hydrocephalus. Neurol. Res. 21(7), 627–630 (1999)Google Scholar
  45. 45.
    Piper, I.R., Miller, J.D., Whittle, I.R., et al.: Automated time-averaged analysis of craniospinal compliance (short pulse response). Acta Neurochir. Suppl. 51, 387–390 (1990)Google Scholar
  46. 46.
    Kim, D.J., Czosnyka, Z., Keong, N., et al.: Index of cerebrospinal compensatory reserve in hydrocephalus. Neurosurgery 64(3), 494–501 (2009)CrossRefGoogle Scholar
  47. 47.
    Baledent, O., Gondry-Jouet, C., Stoquart-Elsankari, S., et al.: Value of phase contrast magnetic resonance imaging for investigation of cerebral hydrodynamics. J. Neuroradiol. 33(5), 292–303 (2006)CrossRefGoogle Scholar
  48. 48.
    Baledent, O., Henry-Feugeas, M.C., Idy-Peretti, I.: Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation. Invest Radiol 36(7), 368–377 (2001)CrossRefGoogle Scholar
  49. 49.
    Bhadelia, R.A., Bogdan, A.R., Kaplan, R.F., et al.: Cerebrospinal fluid pulsation amplitude and its quantitative relationship to cerebral blood flow pulsations: a phase-contrast MR flow imaging study. Neuroradiology 39(4), 258–264 (1997)CrossRefGoogle Scholar
  50. 50.
    Stoquart-El Sankari, S., Lehmann, P., Gondry-Jouet, C., et al.: Phase-contrast MR imaging support for the diagnosis of aqueductal stenosis. AJNR Am. J. Neuroradiol. 30(1), 209–214 (2009)CrossRefGoogle Scholar
  51. 51.
    Stoquart-ElSankari, S., Baledent, O., Gondry-Jouet, C., et al.: Aging effects on cerebral blood and cerebrospinal fluid flows. J. Cereb. Blood Flow Metab. 27(9), 1563–1572 (2007)CrossRefGoogle Scholar
  52. 52.
    Marmarou, A., Schulman, K., LaMorgese, J.: Compartmental analysis of compliance and outflow resistance of cerebrospinal fluid system. J. Neurosurg. 43, 523–534 (1975)CrossRefGoogle Scholar
  53. 53.
    Enzmann, D.R., Pelc, N.J.: Cerebrospinal fluid flow measured by phase-contrast cine MR. AJNR Am. J. Neuroradiol. 14(6):1301–1307; discussion 1309–1310 (1993)Google Scholar
  54. 54.
    Greitz, D., Wirestam, R., Franck, A., et al.: Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology 34(5), 370–380 (1992)CrossRefGoogle Scholar
  55. 55.
    Henry-Feugeas, M.C., Idy-Peretti, I., Baledent, O., et al.: Origin of subarachnoid cerebrospinal fluid pulsations: a phase-contrast MR analysis. Magn. Reson. Imaging 18(4), 387–395 (2000)CrossRefGoogle Scholar
  56. 56.
    Wagshul, M.E., Chen, J.J., Egnor, M.R., et al.: Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature. J. Neurosurg. 104(5), 810–819 (2006)CrossRefGoogle Scholar
  57. 57.
    Feinberg, D.A., Crooks, L.E., Sheldon, P., et al.: Magnetic resonance imaging the velocity vector components of fluid flow. Magn. Reson. Med. 2(6), 555–566 (1985)CrossRefGoogle Scholar
  58. 58.
    Henry-Feugeas, M.C., Idy-Peretti, I., Blanchet, B., et al.: Temporal and spatial assessment of normal cerebrospinal fluid dynamics with MR imaging. Magn. Reson. Imaging 11(8), 1107–1118 (1993)CrossRefGoogle Scholar
  59. 59.
    Nayler, G.L., Firmin, D.N., Longmore, D.B.: Blood flow imaging by cine magnetic resonance. J. Comput. Assist. Tomogr. 10(5), 715–722 (1986)CrossRefGoogle Scholar
  60. 60.
    Baledent, O., Gondry-Jouet, C., Meyer, M.E., et al.: Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus. Invest Radiol 39(1), 45–55 (2004)CrossRefGoogle Scholar
  61. 61.
    Bateman, G.A.: Vascular compliance in normal pressure hydrocephalus. AJNR Am. J. Neuroradiol. 21(9), 1574–1585 (2000)Google Scholar
  62. 62.
    Bradley, W., Scalzo, D., Queralt, J., et al.: Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology 198(2), 523–529 (1996)Google Scholar
  63. 63.
    Luetmer P.H., Huston, J., Friedman, J.A., et al.: Measurement of cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: technique validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery 50(3):534–543; discussion 543–534 (2002)Google Scholar
  64. 64.
    Mase, M., Yamada, K., Banno, T., et al.: Quantitative analysis of CSF flow dynamics using MRI in normal pressure hydrocephalus. Acta Neurochir. Suppl. 71, 350–353 (1998)Google Scholar
  65. 65.
    Buonocore, M.H., Bogren, H.: Factors influencing the accuracy and precision of velocity-encoded phase imaging. Magn. Reson. Med. 26(1), 141–154 (1992)CrossRefGoogle Scholar
  66. 66.
    Baledent, O., Fin, L., Khuoy, L., et al.: Brain hydrodynamics study by phase-contrast magnetic resonance imaging and transcranial color doppler. J. Magn. Reson. Imaging 24(5), 995–1004 (2006)CrossRefGoogle Scholar
  67. 67.
    Enzmann, D.R., Ross, M.R., Marks, M.P., Pelc, N.J.: Blood flow in major cerebral arteries measured by phase-contrast cine MR. AJNR Am. J. Neuroradiol. 15(1), 123–129 (1994)Google Scholar
  68. 68.
    Egnor, M., Rosiello, A., Zheng, L.: A model of intracranial pulsations. Pediatr. Neurosurg. 35(6), 284–298 (2001)CrossRefGoogle Scholar
  69. 69.
    Penn, R.D., Linninger, A.: The physics of hydrocephalus. Pediatr. Neurosurg. 45(3), 161–174 (2009)CrossRefGoogle Scholar
  70. 70.
    Aschoff, A., Kremer, P., Benesch, C., et al.: Overdrainage and shunt technology. Childs Nerv. Syst. 11, 193–202 (1995)CrossRefGoogle Scholar
  71. 71.
    Czosnyka, Z.H., Czosnyka, M., Pickard, J.D.: Shunt testing in-vivo: a method based on the data from the UK shunt evaluation laboratory. Acta Neurochir. Suppl. 81, 27–30 (2002)Google Scholar
  72. 72.
    Taylor, R., Czosnyka, Z., Czosnyka, M., et al.: A laboratory model of testing shunt performance after implantation. Br. J. Neurosurg. 16, 30–35 (2002)CrossRefGoogle Scholar
  73. 73.
    Czosnyka, Z., Czosnyka, M., Richards, H.K., et al.: Posture-related overdrainage: comparison of the performance of 10 hydrocephalus shunts in vitro. Neurosurgery 42(2), 327–333 (1998)CrossRefGoogle Scholar
  74. 74.
    Scollato, A., Gallina, P., Gautam, B., et al.: Changes in aqueductal CSF stroke volume in shunted patients with idiopathic normal-pressure hydrocephalus. AJNR Am. J. Neuroradiol. 30(8), 1580–1586 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marek Czosnyka
    • 1
    Email author
  • Zofia Czosnyka
    • 1
  • Olivier Baledent
    • 2
  • Ruwan Weerakkody
    • 1
  • Magdalena Kasprowicz
    • 3
  • Piotr Smielewski
    • 1
  • John D. Pickard
    • 1
  1. 1.Neurosurgical Unit, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
  2. 2.Department of Imaging and BiophysicsUniversity Hospital AmiensAmiens CedexFrance
  3. 3.Institute of Biomedical Engineering and InstrumentationWroclaw University of TechnologyWroclawPoland

Personalised recommendations