Advertisement

Biomechanical Modeling of the Brain for Computer-Assisted Neurosurgery

  • K. MillerEmail author
  • A. Wittek
  • G. Joldes
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

During neurosurgery, the brain significantly deforms. Despite the enormous complexity of the brain (see Chap. 2) many aspects of its response can be reasonably described in purely mechanical terms, such as displacements, strains and stresses. They can therefore be analyzed using established methods of continuum mechanics. In this chapter, we discuss approaches to biomechanical modeling of the brain from the perspective of two distinct applications: neurosurgical simulation and neuroimage registration in image-guided surgery. These two challenging applications are described below.1

Keywords

Hydrated Harness Incompressibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The financial support of the Australian Research Council (Grants No. DP0343112, DP0664534 and LX0560460), National Health and Medical Research Council Grant No. 1006031 and NIH (Grant No. 1-RO3-CA126466-01A1) is gratefully acknowledged. We thank our collaborators Dr Ron Kikinis and Dr Simon Warfield from Harvard Medical School and Dr Kiyoyuki Chinzei and Dr Toshikatsu Washio from Surgical Assist Technology Group of AIST, Japan, for help in various aspects of our work.

The medical images used in the present study (provided by Dr Simon Warfield) were obtained in the investigation supported by a research grant from the Whitaker Foundation and by NIH grants R21 MH67054, R01 LM007861, P41 RR13218 and P01 CA67165.

We thank Toyota Central R&D Labs. (Nagakute, Aichi, Japan) for providing the THUMS brain model.

References

  1. 1.
    Miller, K., Wittek, A., Joldes, G., et al.: Modelling brain deformations for computer-integrated neurosurgery. Int. J. Numer. Methods Biomed. Eng. 26, 117–138 (2010)zbMATHCrossRefGoogle Scholar
  2. 2.
    Wittek, A., Joldes, G., Couton, M., et al.: Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time; application to non-rigid neuroimage registration. Prog. Biophys. Mol. Biol. 103, 292–303 (2010)CrossRefGoogle Scholar
  3. 3.
    Dimaio, S.P., Salcudean, S.E.: Interactive simulation of needle insertion models. IEEE Trans. Biomed. Eng. 52, 1167–1179 (2005)CrossRefGoogle Scholar
  4. 4.
    Bucholz, R., MacNeil, W., McDurmont, L.: The operating room of the future. Clin. Neurosurg. 51, 228–237 (2004)Google Scholar
  5. 5.
    Nakaji, P., Speltzer, R.F.: The marriage of technique, technology, and judgement. Innov. Surg. Approach 51, 177–185 (2004)Google Scholar
  6. 6.
    Ferrant, M., Nabavi, A., Macq, B., et al.: Serial registration of intraoperative MR images of the brain. Med. Image Anal. 6, 337–359 (2002)CrossRefGoogle Scholar
  7. 7.
    Warfield, S.K., Haker, S.J., Talos, F., et al.: Capturing intraoperative deformations: research experience at Brigham and Women’s Hospital. Med. Image Anal. 9, 145–162 (2005)CrossRefGoogle Scholar
  8. 8.
    Warfield, S.K., Talos, F., Tei, A., et al.: Real-time registration of volumetric brain MRI by biomechanical simulation of deformation during image guided surgery. Comput. Vis. Sci. 5, 3–11 (2002)CrossRefGoogle Scholar
  9. 9.
    Wittek, A., Miller, K., Kikinis, R., et al.: Patient-specific model of brain deformation: application to medical image registration. J. Biomech. 40, 919–929 (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Joldes, G., Wittek, A., Couton, M., et al.: Real-time prediction of brain shift using nonlinear finite element algorithms. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009. Springer, Berlin (2009a)Google Scholar
  11. 11.
    Owen, S.J.: A survey of unstructured mesh generation technology. In: LAB, S. N., ed. 7th International Meshing Roundtable, Dearborn, Michigan, USA, pp. 239–267, October 1998Google Scholar
  12. 12.
    Owen, S.J.: Hex-dominant mesh generation using 3D constrained triangulation. Comput. Aided Des. 33, 211–220 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Viceconti, M., Taddei, F.: Automatic generation of finite element meshes from computed tomography data. Crit. Rev. Biomed. Eng. 31, 27–72 (2003)CrossRefGoogle Scholar
  14. 14.
    Castellano-Smith, A.D., Hartkens, T., Schnabel, J., et al.: Constructing patient specific models for correcting intraoperative brain deformation. In: 4th International Conference on Medical Image Computing and Computer Assisted Intervention MICCAI, Lecture Notes in Computer Science 2208, Utrecht, The Netherlands, pp. 1091–1098 (2001)Google Scholar
  15. 15.
    Couteau, B., Payan, Y., Lavallée, S.: The Mesh-Matching algorithm: an automatic 3D Mesh generator for finite element structures. J. Biomech. 33, 1005–1009 (2000)zbMATHCrossRefGoogle Scholar
  16. 16.
    Luboz, V., Chabanas, M., Swider, P., et al.: Orbital and maxillofacial computer aided surgery: patient-specific finite element models to predict surgical outcomes. Comput. Meth. Biomech. Biomed. Eng. 8, 259–265 (2005)CrossRefGoogle Scholar
  17. 17.
    Clatz, O., Delingette, H., Bardinet, E., et al.: Patient specific biomechanical model of the brain: application to Parkinson’s disease procedure. In: Ayache, N., Delingette, H. (eds.) International Symposium on Surgery Simulation and Soft Tissue Modeling (IS4TM’03), pp. 321–331. Springer, Juan-les-Pins, France (2003)CrossRefGoogle Scholar
  18. 18.
    Ferrant, M., Macq, B., Nabavi, A., et al.: Deformable modeling for characterizing biomedical shape changes. In: Borgefors, I.N.G., Sanniti di Baja, G. (eds.) Discrete Geometry for Computer Imagery: 9th International Conference, Uppsala, Sweden, pp. 235–248. Springer, London (2000)CrossRefGoogle Scholar
  19. 19.
    Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)zbMATHCrossRefGoogle Scholar
  20. 20.
    Horton, A., Wittek, A., Joldes, G., et al.: A meshless Total Lagrangian explicit dynamics algorithm for surgical simulation. Int. J. Numer. Methods Biomed. Eng. 26, 117–138 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Horton, A., Wittek, A., Miller, K.: Computer simulation of brain shift using an element free galerkin method. In: Middleton, J., Jones, M. (eds.) 7th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering CMBEE 2006, Antibes, France (2006a)Google Scholar
  22. 22.
    Horton, A., Wittek, A., Miller, K.: Towards meshless methods for surgical simulation. In: Computational Biomechanics for Medicine Workshop, Medical Image Computing and Computer-Assisted Intervention MICCAI 2006, Copenhagen, Denmark, pp. 34–42 (2006b)Google Scholar
  23. 23.
    Horton, A., Wittek, A., Miller, K.: Subject-specific biomechanical simulation of brain indentation using a meshless method. In: Ayache, N., Ourselin, S., Maeder, A., eds. International Conference on Medical Image Computing and Computer-Assisted Intervention MICCAI 2007, Brisbane, Australia, pp. 541–548. Springer, Berlin, 29 October to 2 November (2007)Google Scholar
  24. 24.
    Li, S., Liu, W.K.: Meshfree Particle Methods. Springer, Berlin (2004)zbMATHGoogle Scholar
  25. 25.
    Liu, G.R.: Mesh Free Methods: Moving Beyond the Finite Element Method. CRC, Boca Raton (2003)zbMATHGoogle Scholar
  26. 26.
    Hagemann, A., Rohr, K., Stiehl, H.S., et al.: Biomechanical modeling of the human head for physically based, nonrigid image registration. IEEE Trans. Med. Imaging 18, 875–884 (1999)zbMATHCrossRefGoogle Scholar
  27. 27.
    Miga, M.I., Paulsen, K.D., Hoopes, P.J., et al.: In vivo quantification of a homogenous brain deformation model for updating preoperative images during surgery. IEEE Trans. Biomed. Eng. 47, 266–273 (2000)CrossRefGoogle Scholar
  28. 28.
    Dutta-Roy, T., Wittek, A., Miller, K.: Biomechanical modelling of normal pressure hydrocephalus. J. Biomech. 41, 2263–2271 (2008)CrossRefGoogle Scholar
  29. 29.
    Hu, J., Jin, X., Lee, J.B., et al.: Intraoperative brain shift prediction using a 3D inhomogeneous patient-specific finite element model. J. Neurosurg. 106, 164–169 (2007)CrossRefGoogle Scholar
  30. 30.
    Wittek, A., Hawkins, T., Miller, K.: On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomech. Model. Mechanobiol. 8, 77–84 (2009)CrossRefGoogle Scholar
  31. 31.
    Wittek, A., Kikinis, R., Warfield, S.K., et al.: Brain shift computation using a fully nonlinear biomechanical model. In: 8th International Conference on Medical Image Computing and Computer Assisted Surgery MICCAI 2005, Palm Springs, California, USA (2005)Google Scholar
  32. 32.
    Wittek, A., Omori, K.: Parametric study of effects of brain-skull boundary conditions and brain material properties on responses of simplified finite element brain model under angular acceleration in sagittal plane. JSME Int. J. 46, 1388–1398 (2003)zbMATHCrossRefGoogle Scholar
  33. 33.
    Joldes, G., Wittek, A., Miller, K.: Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation. Med. Image Anal. 13, 912–919 (2009)CrossRefGoogle Scholar
  34. 34.
    Joldes, G.R., Wittek, A., Miller, K., et al.: Realistic and efficient brain-skull interaction model for brain shift computation. In: Karol Miller, P.M.F.N. (ed.) Computational Biomechanics for Medicine III Workshop, MICCAI 2008, New-York, pp. 95–105 (2008)Google Scholar
  35. 35.
    Jin, X.: Biomechanical response and constitutive modeling of bovine pia-arachnoid complex. PhD thesis, Wayne State University (2009)Google Scholar
  36. 36.
    Miller, K., Wittek, A.: Neuroimage registration as displacement – zero traction problem of solid mechanics. In: Miller, K., Poulikakos, D. (eds.) Computational Biomechanics for Medicine MICCAI-associated Workshop, Copenhagen, pp. 1–14 (2006)Google Scholar
  37. 37.
    Miga, M.I., Sinha, T.K., Cash, D.M., et al.: Cortical surface registration for image-guided neurosurgery using laser-range scanning. IEEE Trans. Med. Imaging 22, 973–985 (2003)zbMATHCrossRefGoogle Scholar
  38. 38.
    Miller, K.: How to test very soft biological tissues in extension. J. Biomech. 34, 651–657 (2001)CrossRefGoogle Scholar
  39. 39.
    Miller, K.: Biomechanics without mechanics: calculating soft tissue deformation without differential equations of equilibrium. In: Middleton, J., Shrive, N., Jones, M. (eds.) 5th Symposium on Computer Methods in Biomechanics and Biomedical Engineering CMBBE2004 Madrid, Spain. First Numerics (2005b)Google Scholar
  40. 40.
    Miller, K.: Method for testing very soft biological tissues in compression. J. Biomech. 38, 153–158 (2005)zbMATHCrossRefGoogle Scholar
  41. 41.
    Ferrant, M., Nabavi, A., Macq, B., et al.: Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans. Med. Imaging 20, 1384–1397 (2001)Google Scholar
  42. 42.
    Fung, Y.C.: A First Course in Continuum Mechanics. Prentice-Hall, London (1969)CrossRefGoogle Scholar
  43. 43.
    Ciarlet, P.G.: Mathematical Elasticity. North Hollad, The Netherlands (1988)zbMATHGoogle Scholar
  44. 44.
    Nowinski, W.L.: Modified Talairach landmarks. Acta Neurochir. 143, 1045–1057 (2001)zbMATHCrossRefGoogle Scholar
  45. 45.
    Miller, K.: Biomechanics without mechanics: calculating soft tissue deformation without differential equations of equilibrium. In: Middleton, J., Shrive, N., Jones, M. (eds.) 5th Symposium on Computer Methods in Biomechanics and Biomedical Engineering, Madrid, Spain. First Numerics (2005a)Google Scholar
  46. 46.
    Dumpuri, P., Thompson, R.C., Dawant, B.M., et al.: An atlas-based method to compensate for brain shift: preliminary results. Med. Image Anal. 11, 128–145 (2007)zbMATHCrossRefGoogle Scholar
  47. 47.
    Dutta Roy, T.: Does normal pressure hydrocephalus have mechanistic causes? PhD Thesis, The University of Western Australia (2010)Google Scholar
  48. 48.
    Miller, K., Chinzei, K.: Constitutive modelling of brain tissue: experiment and theory. J. Biomech. 30, 1115–1121 (1997)zbMATHCrossRefGoogle Scholar
  49. 49.
    Bilston, L., Liu, Z., Phan-Tiem, N.: Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38, 335–345 (2001)CrossRefGoogle Scholar
  50. 50.
    Farshad, M., Barbezat, M., Flüeler, P., et al.: Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma. J. Biomech. 32, 417–425 (1999)Google Scholar
  51. 51.
    Mendis, K.K., Stalnaker, R.L., Advani, S.H.: A constitutive relationship for large deformation finite element modeling of brain tissue. J. Biomech. Eng. 117, 279–285 (1995)CrossRefGoogle Scholar
  52. 52.
    Miller, K.: Constitutive model of brain tissue suitable for finite element analysis of surgical procedures. J. Biomech. 32, 531–537 (1999)CrossRefGoogle Scholar
  53. 53.
    Miller, K.: Constitutive modelling of abdominal organs. J. Biomech. 33, 367–373 (2000)CrossRefGoogle Scholar
  54. 54.
    Miller, K., Chinzei, K.: Mechanical properties of brain tissue in tension. J. Biomech. 35, 483–490 (2002)CrossRefGoogle Scholar
  55. 55.
    Miller, K., Chinzei, K., Orssengo, G., et al.: Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J. Biomech. 33, 1369–1376 (2000)CrossRefGoogle Scholar
  56. 56.
    Nasseri, S., Bilston, L.E., Phan-Thien, N.: Viscoelastic properties of pig kidney in shear, experimental results and modelling. Rheol. Acta 41, 180–192 (2002)CrossRefGoogle Scholar
  57. 57.
    Walsh, E.K., Schettini, A.: Calculation of brain elastic parameters in vivo. Am. J. Physiol. 247, R637–R700 (1984)CrossRefGoogle Scholar
  58. 58.
    Bilston, L.E., Liu, Z., Phan-Tien, N.: Linear viscoelastic properties of bovine brain tissue in shear. Biorheology 34, 377–385 (1997)Google Scholar
  59. 59.
    Miller, K.: Biomechanics of Brain for Computer Integrated Surgery. Publishing House of Warsaw University of Technology, Warsaw (2002)CrossRefGoogle Scholar
  60. 60.
    Prange, M.T., Margulies, S.S.: Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124, 244–252 (2002)zbMATHCrossRefGoogle Scholar
  61. 61.
    Salcudean, S., Turgay, E., Rohling, R.: Identifying the mechanical properties of tissue by ultrasound strain imaging. Ultrasound Med. Biol. 32, 221–235 (2006)CrossRefGoogle Scholar
  62. 62.
    Mccracken, P.J., Manduca, A., Felmlee, J., et al.: Mechanical transient-based magnetic resonance elastography. Magn. Reson. Med. 53, 628–639 (2005)CrossRefGoogle Scholar
  63. 63.
    Sinkus, R., Tanter, M., Xydeas, T., et al.: Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magn. Reson. Imaging 23, 159–165 (2005)CrossRefGoogle Scholar
  64. 64.
    Green, M.A., Bilston, L.E., Sinkus, R.: In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 21(7), 755–764 (2008)CrossRefGoogle Scholar
  65. 65.
    Bathe, K.-J.: Finite Element Procedures. Prentice-Hall, New Jersey (1996)Google Scholar
  66. 66.
    Ma, J., Wittek, A., Singh, S., et al.: Evaluation of accuracy of non-linear finite element computations for surgical simulation: study using brain phantom. Comput. Methods Biomech. Biomed. Eng. 13, 783–794 (2010)CrossRefGoogle Scholar
  67. 67.
    Wittek, A., Dutta-Roy, T., Taylor, Z., et al.: Subject-specific non-linear biomechanical model of needle insertion into brain. Comput. Methods Biomech. Biomed. Eng. J. 11, 135–146 (2008)CrossRefGoogle Scholar
  68. 68.
    Grosland, N.M., Shivanna, K.H., Magnotta, V.A., et al.: IA-FEMesh: an open-source, interactive, multiblock approach to anatomic finite element model development. Comput. Meth. Programs Biomed. 94, 96–107 (2009)CrossRefGoogle Scholar
  69. 69.
    Ito, Y., Shih, A.M., Soni, B.K.: Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement templates. Int. J. Numer. Methods Eng. 77, 1809–1833 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Shepherd, J.F., Zhang, Y., Tuttle, C.J., et al.: Quality improvement and boolean-like cutting operations in hexahedral meshes. In: 10th Conference of the International Society of Grid Generation, Crete, Greece (2007)Google Scholar
  71. 71.
    Joldes, G.R., Wittek, A., Miller, K.: Non-locking tetrahedral finite element for surgical simulation. Commun. Numer. Methods Eng. 25, 827–836 (2008)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Joldes, G.R., Wittek, A., Miller, K.: An efficient hourglass control implementation for the uniform strain hexahedron using the Total Lagrangian formulation. Commun. Numer. Methods Eng. 24, 1315–1323 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Arganda-Carreras, I., Sorzano, S.C.O., Marabini, R., et al.: Consistent and elastic registration of histological sections using vector-spline regularization. International Conference on Computer Vision Approaches to Medical Image Analysis. LNCS. Springer, Setubal, Portugal (2006)Google Scholar
  74. 74.
    Joldes, G.R., Wittek, A., Miller, K.: Real-time nonlinear finite element computations on GPU – application to neurosurgical simulation. Comput. Methods Appl. Mech. Eng. 199, 3305–3314 (2010)ADSCrossRefGoogle Scholar
  75. 75.
    Skrinjar, O., Nabavi, A., Duncan, J.: Model-driven brain shift compensation. Med. Image Anal. 6, 361–373 (2002)CrossRefGoogle Scholar
  76. 76.
    Warfield, S.K., Ferrant, M., Gallez, X., et al.: Real-time biomechanical simulation of volumetric brain deformation for image guided neurosurgery. In: SC 2000: High Performance Networking and Compting Conference, Dallas, USA, pp. 1–16 (2000)Google Scholar
  77. 77.
    Miga, M.I., Roberts, D.W., Kennedy, F.E., et al.: Modeling of retraction and resection for intraoperative updating of images. Neurosurgery 49, 75–85 (2001)Google Scholar
  78. 78.
    Yeoh, O.H.: Some forms of strain-energy function for rubber. Rubber Chem. Technol. 66, 754–771 (1993)CrossRefGoogle Scholar
  79. 79.
    Chakravarty, M.M., Sadikot, A.F., Germann, J., et al.: Towards a validation of atlas warping techniques. Med. Image Anal. 12, 713–726 (2008)CrossRefGoogle Scholar
  80. 80.
    Viola, P., Wells III, W.M.: Alignment by maximization of mutual information. Int. J. Comput. Vision 24, 137–154 (1997)CrossRefGoogle Scholar
  81. 81.
    Wells Iii, W.M., Viola, P., Atsumi, H., et al.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1, 35–51 (1996)CrossRefGoogle Scholar
  82. 82.
    Rexilius, J., Warfield, S., Guttmann, C., et al.: A novel nonrigid registration algorithm and applications. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2001, Toronto, Cananda (2001)Google Scholar
  83. 83.
    Miga, M.I., Paulsen, K.D., Lemery, J.M., et al.: Model-updated image guidance: initial clinical experiences with gravity-induced brain deformation. IEEE Trans. Med. Imaging 18, 866–874 (1999)CrossRefGoogle Scholar
  84. 84.
    Oden, J.T., Belytschko, T., Babuska, I., et al.: Research directions in computational mechanics. Comput. Meth. Appl. Mech. Eng. 192, 913–922 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Berger, J., Horton, A., Joldes, G., et al.: Coupling finite element and mesh-free methods for modelling brain defromations in response to tumour growth. In: Miller, K., Nielsen, P.M.F. (eds.) Computational Biomechanics for Medicine III MICCAI-Associated Workshop, 2008. MICCAI, New York (2008)Google Scholar
  86. 86.
    Miller, K., Taylor, Z., Nowinski, W.L.: Towards computing brain deformations for diagnosis, prognosis and nerosurgical simulation. J. Mech. Med. Biol. 5, 105–121 (2005)CrossRefGoogle Scholar
  87. 87.
    Taylor, Z., Miller, K.: Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus. J. Biomech. 37, 1263–1269 (2004)CrossRefGoogle Scholar
  88. 88.
    Miller, K., Joldes, G., Lance, D., et al.: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Commun. Numer. Methods Eng. 23, 121–134 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. McGraw-Hill, London (2000)zbMATHGoogle Scholar
  90. 90.
    Roberts, D.W., Hartov, A., Kennedy, F.E., et al.: Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery 43, 749–758 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Intelligent Systems for Medicine Laboratory, School of Mechanical and Chemical EngineeringThe University of Western AustraliaCrawley/PerthAustralia
  2. 2.Intelligent Systems for Medicine Laboratory, School of Mechanical and Chemical EngineeringThe University of Western AustraliaCrawley/PerthAustralia

Personalised recommendations