Brain Tissue Mechanical Properties

  • Lynne E. BilstonEmail author
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


The human brain is soft highly metabolically active tissue, floating in cerebrospinal fluid (CSF) within the rigid cranium. This environment acts to isolate the brain from the majority of external mechanical loads experienced by the head during normal daily life. The brain does experience a range of mechanical loads directly, as a result of blood and CSF flow, and to some extent, body posture. The dynamic balance of pulsatile hydrodynamic forces in the skull is maintained by blood and CSF flow into and out of the skull throughout the cardiac cycle (the Monroe-Kelly hypothesis), since the internal volume of the skull is constant. Reflex responses maintain blood flow during changes in posture and activity, so as to stabilize the mechanical and biochemical environment of the brain.


Anisotropy Hydrated Torque Attenuation Rubber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Lynne Bilston is supported by an NHMRC Senior Research Fellowship. She would like to thank Dr Shaokoon Cheng for useful discussions and also for assistance with preparing figures for this chapter.


  1. 1.
    Geng, G., Johnston, L.A., Yan, E., et al.: Biomechanisms for modelling cerebral cortical folding. Med. Image Anal. 13, 920–930 (2009)CrossRefGoogle Scholar
  2. 2.
    McHedlishvili, G., Itkis, M., Sikharulidze, N.: Mechanical properties of brain tissue related to oedema development in rabbits. Acta Neurochir. 96, 137–140 (1989)CrossRefGoogle Scholar
  3. 3.
    Pang, D., Altschuler, E.: Low-pressure hydrocephalic state and viscoelastic alterations in the brain. Neurosurgery 35, 643–655 (1994). discussion 655–656CrossRefGoogle Scholar
  4. 4.
    Kuroiwa, T., Yamada, I., Katsumata, N., et al.: Ex vivo measurement of brain tissue viscoelasticity in postischemic brain edema. Acta Neurochir. Suppl. 96, 254–257 (2006)CrossRefGoogle Scholar
  5. 5.
    Xu, L., Lin, Y., Han, J.C., et al.: Magnetic resonance elastography of brain tumors: preliminary results. Acta Radiol. 48, 327–330 (2007)CrossRefGoogle Scholar
  6. 6.
    Mase, M., Miyati, T., Kasai, H., et al.: Noninvasive estimation of intracranial compliance in idiopathic NPH using MRI. Acta Neurochir. Suppl. 102, 115–118 (2008)CrossRefGoogle Scholar
  7. 7.
    Tarnaris, A., Kitchen, N.D., Watkins, L.D.: Noninvasive biomarkers in normal pressure hydrocephalus: evidence for the role of neuroimaging. J. Neurosurg. 110, 837–851 (2009)CrossRefGoogle Scholar
  8. 8.
    Holbourn, A.: The mechanics of brain injury. Br. Med. Bull. 3, 147–149 (1945)Google Scholar
  9. 9.
    Gennarelli, T.A., Thibault, L.E., Adams, J.H., et al.: Diffuse axonal injury and traumatic coma in the primate. Ann. Neurol. 12, 564–574 (1982)CrossRefGoogle Scholar
  10. 10.
    Hrapko, M., van Dommelen, J.A.W., Peters, G.W.M., et al.: The mechanical behaviour of brain tissue: large strain response and constitutive modelling. Biorheology 43, 623–636 (2006)Google Scholar
  11. 11.
    Green, M.A., Bilston, L.E., Sinkus, R.: In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 21, 755–764 (2008)CrossRefGoogle Scholar
  12. 12.
    Bilston, L.E., Liu, Z., Phan-Thien, N.: Linear viscoelastic properties of bovine brain tissue in shear. Biorheology 34, 377–385 (1997)CrossRefGoogle Scholar
  13. 13.
    Brands, D.W.A., Bovendeerd, P.H.M., Peters, G.W.M., et al.: The large shear strain dynamic behaviour of in vitro porcine brain tissue and a silicone gel model material. Proceedings of Stapp Car Crash Conference: SAE, pp. 249–260 (2000)Google Scholar
  14. 14.
    Nicolle, S., Lounis, M., Willinger, R., et al.: Shear linear behavior of brain tissue over a large frequency range. Biorheology 42, 209–223 (2005)Google Scholar
  15. 15.
    Shen, F., Tay, T.E., Li, J.Z., et al.: Modified Bilston nonlinear viscoelastic model for finite ­element head injury studies. J. Biomech. Eng. 128, 797–801 (2006)CrossRefGoogle Scholar
  16. 16.
    Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer, New York (1993)Google Scholar
  17. 17.
    Muthupillai, R., Lomas, D.J., Rossman, P.J., et al.: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269, 1854–1857 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    Vappou, J., Breton, E., Choquet, P., et al.: Magnetic resonance elastography compared with rotational rheometry for in vitro brain tissue viscoelasticity measurement. Magn. Reson. Mater. Phys., Biol. Med. 20, 273–278 (2007)Google Scholar
  19. 19.
    Lippert, S.A., Rang, E.M., Grimm, M.J.: The high frequency properties of brain tissue. Biorheology 41, 681–691 (2004)Google Scholar
  20. 20.
    Atay, S.M., Kroenke, C.D., Sabet, A., et al.: Measurement of the dynamic shear modulus of mouse brain tissue in vivo by magnetic resonance elastography. J. Biomech. Eng. 130, 021013 (2008)CrossRefGoogle Scholar
  21. 21.
    Arbogast, K.B., Meaney, D.F., Thibault, L.E.: Biomechanical characterization of the constitutive relationship for the brainstem. In: Proceedings of Proceedings of the 39th Stapp Car Crash Conference; Coronado, CA: SAE, pp. 153–159 (1995)Google Scholar
  22. 22.
    Darvish, K.K., Crandall, J.R.: Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue. Med. Eng. Phys. 23, 633–645 (2001)CrossRefGoogle Scholar
  23. 23.
    Fallenstein, G.T., Hulce, V.D., Melvin, J.W.: Dynamic mechanical properties of human brain tissue. J. Biomech. 2, 217–226 (1969)CrossRefGoogle Scholar
  24. 24.
    Bilston, L.E., Liu, Z., Phan-Thien, N.: Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38, 335–345 (2001)Google Scholar
  25. 25.
    Takhounts, E., Crandall, J.R., Darvish, K.: On the importance of nonlinearity of brain tissue under large deformations. Stapp Car Crash J. 47, 79–92 (2003)Google Scholar
  26. 26.
    Ferry, J.: Viscoelastic Properties of Polymers. Wiley, New York (1980)Google Scholar
  27. 27.
    Donnelly, B.R., Medige, J.: Shear properties of human brain tissue. J. Biomech. Eng. 119, 423–432 (1997)CrossRefGoogle Scholar
  28. 28.
    Estes, M.S., McElhaney, J.H.: Response of brain tissue to compressive loading. ASME Paper 70-BHF-13 (1970)Google Scholar
  29. 29.
    Miller, K., Chinzei, K.: Constitutive modelling of brain tissue: experiment and theory. J. Biomech. 30, 1115–1121 (1997)CrossRefGoogle Scholar
  30. 30.
    Cheng, S., Bilston, L.E.: Unconfined compression of white matter. J. Biomech. 40, 117–124 (2007)CrossRefGoogle Scholar
  31. 31.
    Tamura, A., Hayashi, S., Watanabe, I., et al.: Mechanical characterization of brain tissue in high-rate compression. J. Biomech. Sci. Eng. 2, 115–126 (2007)CrossRefGoogle Scholar
  32. 32.
    Pervin, F., Chen, W.W.: Dynamic mechanical response of bovine gray matter and white matter brain tissues under compression. J. Biomech. 42, 731–735 (2009)CrossRefGoogle Scholar
  33. 33.
    Miller, K., Chinzei, K., Orssengo, G., et al.: Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J. Biomech. 33, 1369–1376 (2000)CrossRefGoogle Scholar
  34. 34.
    Chinzei, K., Miller, K.: Compression of swine brain tissue: experiment in vitro. J. Mech. Eng. Lab. 50, 106–115 (1996)Google Scholar
  35. 35.
    Miller, K.: Modelling soft tissue using biphasic theory – a word of caution. Comput. Meth. Biomech. Biomed. Eng. 1, 261–263 (1998)CrossRefGoogle Scholar
  36. 36.
    Taylor, Z., Miller, K.: Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus. J. Biomech. 37, 1263–1269 (2004)CrossRefGoogle Scholar
  37. 37.
    Franceschini, G., Bigoni, D., Regitnig, P., et al.: Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids 54, 2592–2620 (2006)ADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Kaczmarek, M., Subramaniam, R., Neff, S.: The hydromechanics of hydrocephalus: steady-state solutions for cylindrical geometry. Bull. Math. Biol. 59, 295–323 (1997)zbMATHCrossRefGoogle Scholar
  39. 39.
    Miller, K., Chinzei, K.: Mechanical properties of brain tissue in tension. J. Biomech. 35, 483–490 (2002)CrossRefGoogle Scholar
  40. 40.
    Velardi, F., Fraternali, F., Angelillo, M.: Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5, 53–61 (2006)CrossRefGoogle Scholar
  41. 41.
    Schiavone, P., Chassat, F., Boudou, T., et al.: In vivo measurement of human brain elasticity using a light aspiration device. Med. Image Anal. 13, 673–678 (2009)CrossRefGoogle Scholar
  42. 42.
    Wittek, A., Hawkins, T., Miller, K.: On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomech. Model. Mechanobiol. 8, 77–84 (2009)CrossRefGoogle Scholar
  43. 43.
    Dutta-Roy, T., Wittek, A., Miller, K.: Biomechanical modelling of normal pressure hydrocephalus. J. Biomech. 41, 2263–2271 (2008)CrossRefGoogle Scholar
  44. 44.
    Cheng, S., Bilston, L.E.: Computational model of the cerebral ventricles in hydrocephalus. J. Biomech. Eng. 132, 054501–054504 (2010)CrossRefGoogle Scholar
  45. 45.
    Ruan, J.S., Khalil, T., King, A.I.: Dynamic response of the human head to impact by three-dimensional finite element analysis. J. Biomech. Eng. 116, 44–50 (1994)CrossRefGoogle Scholar
  46. 46.
    Zhang, L., Yang, K.H., King, A.I.: Comparison of brain responses between frontal and lateral impacts by finite element modeling. J. Neurotrauma 18, 21–30 (2001)zbMATHCrossRefGoogle Scholar
  47. 47.
    Ho, J., Kleiven, S.: Can sulci protect the brain from traumatic injury? J. Biomech. 42, 2074–2080 (2009)CrossRefGoogle Scholar
  48. 48.
    Kleiven, S.: Influence of impact direction on the human head in prediction of subdural hematoma. J. Neurotrauma 20, 365–379 (2003)CrossRefGoogle Scholar
  49. 49.
    Prange, M.T., Margulies, S.S.: Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124, 244–252 (2002)CrossRefGoogle Scholar
  50. 50.
    Coats, B., Margulies, S.S.: Material properties of porcine parietal cortex. J. Biomech. 39, 2521–2525 (2006)CrossRefGoogle Scholar
  51. 51.
    Brands, D.W.A., Peters, G.W.M., Bovendeerd, P.H.M.: Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact. J. Biomech. 37, 127–134 (2004)CrossRefGoogle Scholar
  52. 52.
    Gefen, A., Gefen, N., Zhu, Q., et al.: Age-dependent changes in material properties of the brain and braincase of the rat. J. Neurotrauma 20, 1163–1177 (2003)CrossRefGoogle Scholar
  53. 53.
    Sack, I., Beierbach, B., Wuerfel, J., et al.: The impact of aging and gender on brain viscoelasticity. Neuroimage 46, 652–657 (2009)CrossRefGoogle Scholar
  54. 54.
    Thibault, K.L., Margulies, S.S.: Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J. Biomech. 31, 1119–1126 (1998)CrossRefGoogle Scholar
  55. 55.
    Weaver, J.B., Perrinez, P.R., Bergeron, J.A., et al.: The effects of interstitial tissue pressure on the measured shear modulus in vivo. In: Manduca, A., Hu, X.P. (eds.) Medical Imaging: Physiology, Function, and Structure from Medical Images, Proceedings of SPIE, pp. 1A-1-11 (2007)Google Scholar
  56. 56.
    Metz, H., McElhaney, J., Ommaya, A.K.: A comparison of the elasticity of live, dead, and fixed brain tissue. J. Biomech. 3, 453–458 (1970)CrossRefGoogle Scholar
  57. 57.
    Garo, A., Hrapko, M., van Dommelen, J.A.W., et al.: Towards a reliable characterisation of the mechanical behaviour of brain tissue: the effects of post-mortem time and sample preparation. Biorheology 44, 51–59 (2007)Google Scholar
  58. 58.
    Gefen, A., Margulies, S.S.: Are in vivo and in situ brain tissues mechanically similar? J. Biomech. 37, 1339–1352 (2004)CrossRefGoogle Scholar
  59. 59.
    Liu, Z.: Rheological Properties of Biological Soft Tissues. PhD Thesis. University of Sydney, Sydney (2001)Google Scholar
  60. 60.
    Cheng, S., Clarke, E.C., Bilston, L.E.: The effects of preconditioning strain on measured tissue properties. J. Biomech. 42, 1360–1362 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Neuroscience Research Australia and University of New South WalesSydneyAustralia

Personalised recommendations