Skip to main content

Modeling and H PID Plus Feedforward Controller Design for an Electrohydraulic Actuator System

  • Chapter
  • First Online:
Advanced Mechatronics and MEMS Devices

Part of the book series: Microsystems ((MICT,volume 23))

  • 2842 Accesses

Abstract

This work studies the modeling and design of a proportional-integral-derivative (PID) plus feedforward controller for a high precision electrohydraulic actuator (EHA) system. The high precision positioning EHA system is capable of achieving a very high accuracy positioning performance. Many sophisticated control schemes have been developed to address these problems. However, in industrial applications, PID control is still the most popular control strategy used. Therefore, the main objective of this work is to design a PID controller for the EHA system, improving its performance while maintaining and enjoying the simple structure of the PID controller. An extra feedforward term is introduced into the PID controller to compensate for the tracking error especially during the transient period. The PID plus feedforward control design is augmented into a static output feedback (SOF) control design problem and the SOF controller is designed by solving an H optimization problem with bilinear matrix inequalities (BMIs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aström K, Hagglund, T (2001) The future of PID control. Contr Eng Pract 9(11):1163–1175

    Google Scholar 

  2. Bara GI, Boutayeb M (2005) Static output feedback stabilization with H performance for linear discrete-tiem systems. IEEE Trans Automat Contr 50(2):250–254

    Article  MathSciNet  Google Scholar 

  3. Bianchi FD, Mantz RJ, Christiansen CF (2008) Multivariable PID control with set-point weighting via BMI optimization. Automatica 44(2):472–478

    Article  MathSciNet  Google Scholar 

  4. Dieulot JY, Colas F (2009) Robust PID control of a linear mechanical axis: a case study. Mechatronics 19:269–273

    Article  Google Scholar 

  5. Gahinet P, Apkarian P (1994) A linear matrix inequality approach to H control. Int J Robust Nonlinear Contr 4:421–448

    Article  MathSciNet  MATH  Google Scholar 

  6. Ge M, Chiu MS, Wang QG (2002) Robust PID controller design via LMI approach. J Process Contr 12(1):3–13

    Article  Google Scholar 

  7. Ge P, Jouaneh M (1996) Tracking control of a piezoceramic actuator. IEEE Trans Contr Syst Technol 4(3):209–216

    Article  Google Scholar 

  8. Gomis-Bellmunt O, Campanile F, Galceran-Arellano S, Montesinos-Miracle D, Rull-Duran J (2008) Hydraulic actuator modeling for optimization of mechatronic and adaptronic systems. Mechatronics 18:634–640

    Article  Google Scholar 

  9. Grewal MS, Amdrews AP (2001) Kalman filtering theory and practice using MATLAB. Wiley, New York

    Google Scholar 

  10. Habibi SR, Goldenberg A (2000) Design of a new high-performance electrohydraulic actuator. IEEE/ASME Trans Mechatron 5(2):158–164

    Article  Google Scholar 

  11. Habibi SR, Goldenberg AA (2000) Design of a new high-performance electrohydraulic actuator. IEEE/ASME Trans Mechatron 5(2):158–165

    Article  Google Scholar 

  12. Hang CC, Aström K, Ho WK (1991) Refinements of the Ziegler-Nichols tuning formula. IEE Proc Contr Theor Appl 138(2):111–118

    Article  Google Scholar 

  13. Laurent EG, Francois O, Mustapha A (1997) A cone complementarity linearization algorithm for static output feedback and related problems. IEEE Trans Automat Contr 42(8):1171–1176

    Article  MATH  Google Scholar 

  14. Leva A, Bascetta L (2006) On the design of the feedforward compensator in two-degree-of-freedom controllers. Mechatronics 16:533–546

    Article  Google Scholar 

  15. Lin Y, Shi Y, Burton R (2009) Modeling and robust discrete-time sliding mode control design for a fluid power electrohydraulic actuator (EHA) system. In: Dynamic system control conference, Hollywood, USA

    Google Scholar 

  16. Rovira-Mas F, Zhang Q, Hansen AC (2007) Dynamic behavior of an electrohydraulic valve: typology of characteristic curves. Mechatronics 17:551–561

    Article  Google Scholar 

  17. Sampson E (2005) Fuzzy control of the electrohydraulic actuator. Master’s thesis, University of Saskatchewan

    Google Scholar 

  18. Thanh TDC, Ahn KK (2006) Nonlinear PID control to improve the control performance of 2-axes pneumatic artificial muscle manipulator using neural network. Mechatronics 16:577–587

    Article  Google Scholar 

  19. Toufighi MH, Sadati SH, Najaif F (2007) Modeling and analysis of a mechatronic actuator system by using bond graph methodology. In: Proceedings of IEEE aerospace conference, Big Sky, MT, pp 1–8

    Google Scholar 

  20. Visioli A (2004) A new design for a PID plus feedforward controller. J Process Contr 14(5):457–463

    Article  Google Scholar 

  21. Wang J, Wu J, Wang L, You Z (2009) Dynamic feed-forward control of a parallel kinematic machine. Mechatronics 19:313–324

    Article  Google Scholar 

  22. Wang S, Habibi S, Burton R, Sampson E (2008) Sliding mode control for an electrohydraulic actuator system with discontinuous non-linear friction. Proc IME J Syst Contr Eng 222(8):799–815

    Google Scholar 

  23. Yanada H, Furuta K (2007) Adaptive control of an electrohydraulic servo system utilizing online estimate of its natural frequency. Mechatronics 17:337–343

    Article  Google Scholar 

  24. Zheng F, Wang QG, Lee TH (2002) On the design of multivariable PID controller via LMI approach. Automatica 38(3):517–526

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lin, Y., Shi, Y., Burton, R. (2013). Modeling and H PID Plus Feedforward Controller Design for an Electrohydraulic Actuator System. In: Zhang, D. (eds) Advanced Mechatronics and MEMS Devices. Microsystems, vol 23. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9985-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9985-6_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9984-9

  • Online ISBN: 978-1-4419-9985-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics