Classical Helium Heat Transfer

Chapter
Part of the International Cryogenics Monograph Series book series (ICMS)

Abstract

To obtain a better physical feeling for pool boiling heat transfer, it is helpful to consider a hypothetical experimental system. Such an experiment, shown in Fig. 5.1, consists of a flat heated plate with some arbitrary orientation exposed to an effectively infinite bath of liquid helium. The experiment consists of heating the plate from inside the insulated region and measuring the temperature difference between the bath and surface, ΔT s , as it varies with heat flux q. There are a number of variables that affect the results in this experiment. Among these are bath temperature and pressure, surface orientation, physical characteristics of the heated surface including coatings, and frequency of heat flux. The general impact of these variables is described further below.

Keywords

Convection Total Heat Helium Assure Boiling 

References

  1. 1.
    See for example, E. R. G. Eckert and R. M. Drake, Analysis of Heat and Mass Transfer, McGraw–Hill, New York, 1972.Google Scholar
  2. 2.
    See for example, F. P. Incropera and D. P. Dewitt, Fundamentals of Heat Transfer, Wiley, New York, 1981.Google Scholar
  3. 3.
    J. A. Whitehead, Survey of Hydrodynamic Instabilities, in Fluctuations, Instabilities and Phase Transitions, Tormad Riste (Ed.), pp. 153–180, Plenum Press, New York, 1975.CrossRefGoogle Scholar
  4. 4.
    R P. Behringer and G. Ahlers, Heat Transport and Temporal Evolution of Fluid Flow Near the Rayleigh-Bénard Instability in Cylindrical Containers, J. Fluid Mech. 125, 219 (1982).CrossRefGoogle Scholar
  5. 5.
    F. Irie, G. Kippling, K. Uders, T. Matsushita, U. Ruppert, and M. Takeo, Heat Transfer to Helium in the Near Critical Region, Adv. Cryog. Eng. 23, 326 (1978).CrossRefGoogle Scholar
  6. 6.
    M. A. Hilal, R. W. Boom, and M. M. El-Wakil, An Experimental Investigation of Free Convection Heat Transfer in Supercritical Helium, Int. J. Heat Mass Transfer 23, 697 (1980).CrossRefGoogle Scholar
  7. 7.
    G. Kippling and K. Kutzner, in Pure and Applied Cryogenics, Vol. 6, pp. 97–107, Pergamon Press, Oxford, 1967.Google Scholar
  8. 8.
    M. A. Hilal, Analytical Study of Laminar Free Convection Heat Transfer to Supercritical Helium, Cryogenics 18, 545 (1978).CrossRefGoogle Scholar
  9. 9.
    D. N. Sinha, J. S. Semura, and L. C. Brodie, Homogeneous Nucleation in 4He: A Corresponding States Analysis, Phys. Rev. A 26, 1048 (1982).CrossRefGoogle Scholar
  10. 10.
    J. Frenkel, Kinetic Theory of Liquids, Chap. 7, Dover, New York, 1955.Google Scholar
  11. 11.
    E. Flint and J. Van Cleve, Heat Transport to He I from Polished Silicon Surface, Adv. Cryog. Eng. 27, 283 (1982).Google Scholar
  12. 12.
    Y. Y. Hsu and R. W. Graham, An Analytical and Experimental Study of the Thermal Boundary Layer and the Ebullition Cycle in Nucleate Boiling, NASA TN D-594 (1961).Google Scholar
  13. 13.
    W. B. Bald, Cryogenic Heat Transfer Research at Oxford, Part I, Nucleate Pool Boiling, Cryogenics 13, 457 (1973).CrossRefGoogle Scholar
  14. 14.
    S. S. Kutateladze, Statistical Science & Technical Publications of Literature on Machinery, Atomic Energy Commission Translation 3770, Technical Information Services, Oak Ridge, TN (1949), 1952.Google Scholar
  15. 15.
    W. B. Bald and T. V. Wang, The Nucleate Pool Boiling Dilemma, Cryogenics 16, 314 (1976).CrossRefGoogle Scholar
  16. 16.
    C. Schmidt, Review of Steady State and Transient Heat Transfer in Pool Boiling Helium I, in Stability of Superconductors, pp. 17–32, International Institute of Refrigeration Commission A 1/2, Saclay, France, 1981.Google Scholar
  17. 17.
    L. S. Tong, Boiling Heat Transfer and Two Phase Flow, Chap. 2, Wiley, New York, 1965.Google Scholar
  18. 18.
    N. Zuber, M. Tribes, and J. W. Westwater, The Hydrodynamic Crisis in Pool Boiling of Saturated and Subcooled Liquids, in International Development in Heat Transfer, Part. II, pp. 230–234, ASME, New York, 1961.Google Scholar
  19. 19.
    R. V. Smith, Review of Heat Transfer to Helium I, Cryogenics 9, 11 (1969).CrossRefGoogle Scholar
  20. 20.
    D. N. Lyon, Boiling Heat Transfer and Peak Nucleate Boiling Fluxes in Saturated Liquid Helium Between λ and Critical Temperatures, Adv. Cryog. Eng. 10, 371 (1965).Google Scholar
  21. 21.
    E. Ibrahim, R. W. Boom, and G. E. McIntosh, Heat Transfer to Subcooled Liquid Helium, Adv. Cryog. Eng. 23, 333 (1978).CrossRefGoogle Scholar
  22. 22.
    R. Capri, Heat Transfer to Subcooled He I, Adv. Cryog. Eng. 29, 281 (1984).Google Scholar
  23. 23.
    Yu. Kirichenko, K. V. Rusanov, and E. G. Tyurina, Heat Transfer in Subcooled Liquid Cryogens, Cryogenics 23, 209 (1983).CrossRefGoogle Scholar
  24. 24.
    J. H. Lienhard and P. T. Y. Wong, The Dominant Unstable Wavelength and Minimum Heat Flux During Film Boiling on a Horizontal Cylinder, J. Hear Transfer 86, 220 (1964).CrossRefGoogle Scholar
  25. 25.
    B. P. Breen and J. W. Westwater, Effects of Diameter of Horizontal Tubes on Film Boiling Heat Transfer, Chem. Eng. Prog. 58, 67 (1962).Google Scholar
  26. 26.
    E. G. Brentari, P. J. Giarratano, and R. V. Smith, Boiling Heat Transfer for Oxygen, Nitrogen, Hydrogen, and Helium, NBS Technical Note 317, U.S. Government Printing Office, Washington, DC, Sept. 20, 1965.Google Scholar
  27. 27.
    J. C. Boissin, J. J. Thibault, J. Roussel, and E. Faddi, Boiling Heat Transfer and Peak Nucleate Boiling Flux in Liquid Helium, Adv. Cryog. Eng. 13, 607 (1967).Google Scholar
  28. 28.
    R. D. Cummings and J. L. Smith, Boiling Heat Transfer to Liquid Helium, Liquid Helium Technology, Proceedings of the International Institute of Refrigeration, Commission 1, Boulder, CO, Pergamon Press, Oxford, 1966, pp. 85–96.Google Scholar
  29. 29.
    H. Ogata and W. Nakayama, Boiling Heat Transfer to Helium from Machined and Chemically Treated Copper Surfaces, Adv. Cryog. Eng. 27, 309 (1982).Google Scholar
  30. 30.
    Lehangre, J. C. Boissin, C. Johannes, and A. de La Harpe, Critical Nucleate Boiling of Liquid Helium in Narrow Tubes and Annuli, Proceedings of the 2nd International Cryogenics Engineering Conference, p. 274, Hiffe Science and Technology, Brighton, 1968.Google Scholar
  31. 31.
    M. N. Wilson, Heat Transfer to Boiling Liquid Helium in Narrow Vertical Channels, Liquid Helium Technology, Proceedings of the International Institute of Refrigeration, Commission 1, Boulder, CO, Pergamon Press, Oxford, 1966, pp. 109–114.Google Scholar
  32. 32.
    R. G. Sydoriak and T. R. Roberts, Study of Boiling in Short Narrow Channels and Its Application to Design of Magnets Cooled by Liquid H2and N2, J. Appl. Phys. 28, 143 (1956).CrossRefGoogle Scholar
  33. 33.
    Z. Chen and S. W. Van Sciver, Channel Heat Transfer in He I–Steady State Orientation Dependence, Adv. Cryog. Eng. 31, (1986).CrossRefGoogle Scholar
  34. 34.
    R. F. Barron, Cryogenic Heat Transfer, Taylor Francis, Philadelphia, 1999.Google Scholar
  35. 35.
    P. Giarratano, V. D. Arp, and R. V. Smith, Forced Convection Heat Transfer to Supercritical Helium, Cryogenics 11, 385 (1971).CrossRefGoogle Scholar
  36. 36.
    A. de La Harpe, S. Lehongre, J- Mollard, and C. Johannes, Boiling Heat Transfer and Pressure Drop of Liquid Helium I Under Forced Circulation in a Helically Coiled Tube, Adv. Cryog. Eng. 14, 170 (1963).Google Scholar
  37. 37.
    C. Johannes, Studies of Forced Convection Heat Transfer to Helium I, Adv. Cryog. Eng. 17, 352 (1972).Google Scholar
  38. 38.
    W. G. Steward, Transient Helium Heat Transfer Phase I–Static Coolant, Int. J. Heat Mass Transfer 21, 863 (1978).CrossRefGoogle Scholar
  39. 39.
    C. Schmidt, Transient Heat Transfer and Recovery Behavior of Superconductors, IEEE Trans. Magnet. Mag-17, 738 (1981).CrossRefGoogle Scholar

Further Readings

  1. R. F. Barron, Cryogenic Heat Transfer, Taylor Francis, Philadelphia, 1999.Google Scholar
  2. A. Bejan, Convection Heat Transfer, Wiley, New York, 1984.MATHGoogle Scholar
  3. E. R. G. Eckert and R. M. Drake, Analysis of Heat and Mass Transfer, McGraw–Hill, New York, 1972.Google Scholar
  4. J. Frenkel, Kinetic Theory of Liquids, Chap. 7, Dover, New York, 1955.Google Scholar
  5. W. Frost, Heat Transfer at Low Temperatures, Plenum Press, New York, 1975.Google Scholar
  6. F. P. Incropera and D. P. Dewitt, Fundamentals of Heat Transfer, Wiley, New York, 1981.Google Scholar
  7. L. S. Tong, Boiling Heat Transfer and Two Phase Flow, Wiley, New York, 1965.Google Scholar
  8. P. B. Whalley, Two Phase Flow and Heat Transfer, Oxford Science, Oxford, 1996Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Field LaboratoryFlorida State UniversityTallahasseeUSA

Personalised recommendations