Skip to main content

Epigenetic Regulation of miRNAs in Cancer

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 754))

Abstract

MicroRNAs (miRNAs) are short noncoding RNAs with gene regulatory functions. It has been demonstrated that the genes encoding for miRNAs undergo the same regulatory epigenetic processes of protein coding genes. In turn, a specific subgroup of miRNAs, called epi-miRNAs, is able to directly target key enzymatic effectors of the epigenetic machinery (such as DNA methyltransferases, histone deacetylases, and polycomb genes), therefore indirectly affecting the expression of epigenetically regulated oncogenes and tumor suppressor genes. Also, several of the epigenetic drugs currently approved as anticancer agents affect the expression of miRNAs and this might explain part of their mechanism of action. This chapter focuses on the tight relationship between epigenetics and miRNAs and provides some insights on the translational implications of these findings, leading to the upcoming introduction of epigenetically related miRNAs in the treatment of cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  2. Pasquinelli AE, Hunter S, Bracht J (2005) MicroRNAs: a developing story. Curr Opin Genet Dev 15:200–205

    Article  PubMed  CAS  Google Scholar 

  3. Harfe BD (2005) MicroRNAs: in vertebrate development. Curr Opin Genet Dev 15:410–415

    Article  PubMed  CAS  Google Scholar 

  4. Carleton M, Cleary MA, Linsley PS (2007) MicroRNAs and cell cycle regulation. Cell Cycle 6:2127–2132

    Article  PubMed  CAS  Google Scholar 

  5. Boehm M, Slack FJ (2006) MicroRNA control of lifespan and metabolism. Cell Cycle 5:837–840

    Article  PubMed  CAS  Google Scholar 

  6. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews 9:102–114

    PubMed  CAS  Google Scholar 

  7. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    Article  PubMed  CAS  Google Scholar 

  8. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128

    Article  PubMed  CAS  Google Scholar 

  9. Vatolin S, Navaratne K, Weil RJ (2006) A novel method to detect functional microRNA targets. J Mol Biol 358:983–996

    Article  PubMed  CAS  Google Scholar 

  10. Eiring AM et al (2010) MiR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140:652–665

    Article  PubMed  CAS  Google Scholar 

  11. Calin GA et al (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 105:5166–5171

    Article  PubMed  CAS  Google Scholar 

  12. Sevignani C, Calin GA, Siracusa LD, Croce CM (2006) Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 17:189–202

    Article  PubMed  CAS  Google Scholar 

  13. Calin GA et al (2005) A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    Article  PubMed  CAS  Google Scholar 

  14. Calin GA et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    Article  PubMed  CAS  Google Scholar 

  15. Nelson KM, Weiss GJ (2008) MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther 7:3655–3660

    Article  PubMed  CAS  Google Scholar 

  16. Fabbri M, Croce CM, Calin GA (2009) MicroRNAs in the ontogeny of leukemias and lymphomas. Leuk Lymphoma 50:160–170

    Article  PubMed  CAS  Google Scholar 

  17. Fabbri M, Croce CM, Calin GA (2008) MicroRNAs. Cancer J 14:1–6

    Article  PubMed  CAS  Google Scholar 

  18. Fabbri M et al (2008) MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia 22:1095–1105

    Article  PubMed  CAS  Google Scholar 

  19. Deng S, Calin GA, Croce CM, Coukos G, Zhang L (2008) Mechanisms of microRNA deregulation in human cancer. Cell Cycle 7:2643–2646

    Article  PubMed  CAS  Google Scholar 

  20. Garzon R, Croce CM (2008) MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol 15:352–358

    Article  PubMed  CAS  Google Scholar 

  21. Croce CM (2009) Causes, and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714

    Article  PubMed  CAS  Google Scholar 

  22. He L et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435: 828–833

    Article  PubMed  CAS  Google Scholar 

  23. Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease. Cell 133:217–222

    Article  PubMed  CAS  Google Scholar 

  24. Costinean S et al (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 103:7024–7029

    Article  PubMed  CAS  Google Scholar 

  25. Thai TH et al (2007) Regulation of the germinal center response by microRNA-155. Science 316:604–608

    Article  PubMed  CAS  Google Scholar 

  26. Rodriguez A et al (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316:608–611

    Article  PubMed  CAS  Google Scholar 

  27. Tili E et al (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179:5082–5089

    PubMed  CAS  Google Scholar 

  28. Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6:184–192

    Article  PubMed  CAS  Google Scholar 

  29. Meng F et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658

    Article  PubMed  CAS  Google Scholar 

  30. Asangani IA et al (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–2136

    Article  PubMed  CAS  Google Scholar 

  31. Frankel LB et al (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283:1026–1033

    Article  PubMed  CAS  Google Scholar 

  32. Cimmino A et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949

    Article  PubMed  CAS  Google Scholar 

  33. Fabbri M et al (2011) Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA 305:59–67

    Article  PubMed  CAS  Google Scholar 

  34. Fabbri M, Ivan M, Cimmino A, Negrini M, Calin GA (2007) Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin Biol Ther 7:1009–1019

    Article  PubMed  CAS  Google Scholar 

  35. Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66:1277–1281

    Article  PubMed  CAS  Google Scholar 

  36. Saito Y et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9: 435–443

    Article  PubMed  CAS  Google Scholar 

  37. Lujambio A et al (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67:1424–1429

    Article  PubMed  CAS  Google Scholar 

  38. Roman-Gomez J et al (2009) Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol 27:1316–1322

    Article  PubMed  CAS  Google Scholar 

  39. Agirre X et al (2009) Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res 69(10):4443–4453

    Article  PubMed  CAS  Google Scholar 

  40. Ando T et al (2009) DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer 124:2367–2374

    Article  PubMed  CAS  Google Scholar 

  41. Lee KH et al (2009) Epigenetic silencing of microRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9:293–301

    Article  PubMed  CAS  Google Scholar 

  42. Brueckner B et al (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67:1419–1423

    Article  PubMed  CAS  Google Scholar 

  43. Lu L, Katsaros D, de la Longrais IA, Sochirca O, Yu H (2007) Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 67:10117–10122

    Article  PubMed  CAS  Google Scholar 

  44. Datta J et al (2008) Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 68:5049–5058

    Article  PubMed  CAS  Google Scholar 

  45. Yanaihara N et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198

    Article  PubMed  CAS  Google Scholar 

  46. Lujambio A et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 105:13556–13561

    Article  PubMed  CAS  Google Scholar 

  47. Toyota M et al (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68:4123–4132

    Article  PubMed  CAS  Google Scholar 

  48. Lehmann U et al (2008) Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 214:17–24

    Article  PubMed  CAS  Google Scholar 

  49. Grady WM et al (2008) Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27:3880–3888

    Article  PubMed  CAS  Google Scholar 

  50. Saito Y et al (2009) Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun 379:726–731

    Article  PubMed  CAS  Google Scholar 

  51. Fazi F et al (2007) Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12:457–466

    Article  PubMed  CAS  Google Scholar 

  52. Fabbri M et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104:15805–15810

    Article  PubMed  CAS  Google Scholar 

  53. Garzon R et al (2009) MicroRNA -29b induces global DNA hypomethylation and tumor suppressor gene re-expression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113:6411–6418

    Article  PubMed  CAS  Google Scholar 

  54. Duursma AM, Kedde M, Schrier M, le Sage C, Agami R (2008) miR-148 targets human DNMT3b protein coding region. RNA 14:872–877

    Article  PubMed  CAS  Google Scholar 

  55. Sinkkonen L et al (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15:259–267

    Article  PubMed  CAS  Google Scholar 

  56. Benetti R et al (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15:268–279

    Article  PubMed  CAS  Google Scholar 

  57. Braconi C, Huang N, Patel T (2010) MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 51:881–890

    PubMed  CAS  Google Scholar 

  58. Chen JF et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233

    Article  PubMed  CAS  Google Scholar 

  59. Tuddenham L et al (2006) The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 580:4214–4217

    Article  PubMed  CAS  Google Scholar 

  60. Li Z et al (2009) Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 282:15676–15684

    Article  Google Scholar 

  61. Noonan EJ et al (2009) miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28:1714–1724

    Article  PubMed  CAS  Google Scholar 

  62. Varambally S et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322:1695–1699

    Article  PubMed  CAS  Google Scholar 

  63. Friedman JM et al (2009) The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res 69:2623–2629

    Article  PubMed  CAS  Google Scholar 

  64. Kaminskas E, Farrell AT, Wang YC, Sridhara R, Pazdur R (2005) FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist 10:176–182

    Article  PubMed  CAS  Google Scholar 

  65. Liu S et al (2010) Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer Cell 17:333–347

    Article  PubMed  CAS  Google Scholar 

  66. Shin S et al (2009) MicroRNAs that respond to histone deacetylase inhibitor SAHA and p53 in HCT116 human colon carcinoma cells. Int J Oncol 35:1343–1352

    PubMed  CAS  Google Scholar 

  67. Kretzner L et al (2011) Combining histone deacetylase inhibitor vorinostat with aurora kinase inhibitors enhances lymphoma cell killing with repression of c-Myc, hTERT, and microRNA levels. Cancer Res 71:3912–3920

    Article  PubMed  CAS  Google Scholar 

  68. Lee S et al (2011) Histone deacetylase regulates high mobility group A2-targeting microRNAs in human cord blood-derived multipotent stem cell aging. Cell Mol Life Sci 68:325–336

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muller Fabbri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fabbri, M., Calore, F., Paone, A., Galli, R., Calin, G.A. (2013). Epigenetic Regulation of miRNAs in Cancer. In: Karpf, A. (eds) Epigenetic Alterations in Oncogenesis. Advances in Experimental Medicine and Biology, vol 754. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9967-2_6

Download citation

Publish with us

Policies and ethics