Skip to main content

DNA Hypomethylation and Hemimethylation in Cancer

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 754))

Abstract

In contrast to earlier views that there was much compartmentalization of the types of sequences subject to cancer-linked changes in DNA epigenetics, it is now clear that both cancer-associated DNA hypomethylation and hypermethylation are found throughout the genome. The hypermethylation includes promoters of tumor suppressor genes whose expression becomes repressed, thereby facilitating cancer formation. How hypomethylation contributes to carcinogenesis has been less clear. Recent insights into tissue-specific intra- and intergenic methylation and into cancer methylomes suggest that some of the DNA hypomethylation associated with cancers is likely to aid in tumor formation and progression by many different pathways, including effects on transcription in cis. Cancer-associated loss of DNA methylation from intergenic enhancers, promoter regions, silencers, and chromatin boundary elements may alter transcription rates. In ­addition, cancer-associated intragenic DNA hypomethylation might modulate ­alternative promoter usage, ­production of intragenic noncoding RNA transcripts, cotranscriptional splicing, and transcription initiation or elongation. Initial studies of hemimethylation of DNA in cancer and many new studies of DNA demethylation in normal tissues suggest that active demethylation with spreading of hypomethylation can explain much of the cancer-associated DNA hypomethylation. The new discoveries that genomic 5-hydroxymethylcytosine is an intermediate in DNA demethylation, a base with its own functionality, and a modified base that, like 5-methylcytosine, exhibits cancer-associated losses, suggest that both decreased hydroxymethylation and decreased methylation of DNA play important roles in carcinogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Ehrlich M (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11:6883–6894

    PubMed  CAS  Google Scholar 

  2. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301(5895):89–92

    PubMed  CAS  Google Scholar 

  3. Ehrlich M (2009) DNA hypomethylation in cancer cells. Epigenomics 1(2):239–259

    PubMed  CAS  Google Scholar 

  4. Ehrlich M, Jiang G, Fiala ES, Dome JS, Yu MS, Long TI, Youn B, Sohn O-S, Widschwendter M, Tomlinson GE, Chintagumpala M, Champagne M, Parham DM, Liang G, Malik K, Laird PW (2002) Hypomethylation and hypermethylation of DNA in Wilms tumors. Oncogene 21(43):6694–6702

    PubMed  CAS  Google Scholar 

  5. Ehrlich M (2006) Cancer-linked DNA hypomethylation and its relationship to hypermethylation. Curr Top Microbiol Immunol 310:251–274

    PubMed  CAS  Google Scholar 

  6. Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21(35):5400–5413

    PubMed  CAS  Google Scholar 

  7. Pfeifer GP, Rauch TA (2009) DNA methylation patterns in lung carcinomas. Semin Cancer Biol 19(3):181–187

    PubMed  CAS  Google Scholar 

  8. Nishiyama R, Qi L, Lacey M, Ehrlich M (2005) Both hypomethylation and hypermethylation in a 0.2-kb region of a DNA repeat in cancer. Molec Cancer Res 3:617–626

    CAS  Google Scholar 

  9. Tsumagari K, Qi L, Jackson K, Shao C, Lacey M, Sowden J, Tawil R, Vedanarayanan V, Ehrlich M (2008) Epigenetics of a tandem DNA repeat: chromatin DNaseI sensitivity and opposite methylation changes in cancers. Nucleic Acids Res 36:2196–2207

    PubMed  CAS  Google Scholar 

  10. Lindsey JC, Lusher ME, Anderton JA, Gilbertson RJ, Ellison DW, Clifford SC (2007) Epigenetic deregulation of multiple S100 gene family members by differential hypomethylation and hypermethylation events in medulloblastoma. Br J Cancer 97(2):267–274

    PubMed  CAS  Google Scholar 

  11. Grunau C, Brun ME, Rivals I, Selves J, Hindermann W, Favre-Mercuret M, Granier G, De Sario A (2008) BAGE hypomethylation, a new epigenetic biomarker for colon cancer detection. Cancer Epidemiol Biomarkers Prev 17(6):1374–1379

    PubMed  CAS  Google Scholar 

  12. Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt D, O’Keeffe S, Haas S, Vingron M, Lehrach H, Yaspo ML (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321(5891):956–960

    PubMed  CAS  Google Scholar 

  13. Alvarez H, Opalinska J, Zhou L, Sohal D, Fazzari MJ, Yu Y, Montagna C, Montgomery EA, Canto M, Dunbar KB, Wang J, Roa JC, Mo Y, Bhagat T, Ramesh KH, Cannizzaro L, Mollenhauer J, Thompson RF, Suzuki M, Meltzer SJ, Melnick A, Greally JM, Maitra A, Verma A (2011) Widespread hypomethylation occurs early and synergizes with gene amplification during esophageal carcinogenesis. PLoS Genet 7(3):e1001356

    PubMed  CAS  Google Scholar 

  14. Sandoval J, Heyn HA, Moran S, Serra-Musach J, Pujana MA, Bibikova M, Esteller M (2011) Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 6(6):692–702

    PubMed  CAS  Google Scholar 

  15. Ruike Y, Imanaka Y, Sato F, Shimizu K, Tsujimoto G (2010) Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing. BMC Genomics 11:137

    PubMed  Google Scholar 

  16. Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG, Wen B, Wu H, Liu Y, Diep D, Briem E, Zhang K, Irizarry RA, Feinberg AP (2011) Increased methylation variation in epigenetic domains across cancer types. Nat Genet 43(8):768–775

    PubMed  CAS  Google Scholar 

  17. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41(2):178–186

    PubMed  CAS  Google Scholar 

  18. Feber A, Wilson GA, Zhang L, Presneau N, Idowu B, Down TA, Rakyan VK, Noon LA, Lloyd AC, Stupka E, Schiza V, Teschendorff AE, Schroth GP, Flanagan A, Beck S (2011) Comparative methylome analysis of benign and malignant peripheral nerve sheath tumors. Genome Res 21(4):515–524

    PubMed  CAS  Google Scholar 

  19. Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, Scandura JM (2011) DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One 6(1):e14524

    PubMed  CAS  Google Scholar 

  20. Song L, Zhang Z, Grasfeder LL, Boyle AP, Giresi PG, Lee BK, Sheffield NC, Graf S, Huss M, Keefe D, Liu Z, London D, McDaniell RM, Shibata Y, Showers KA, Simon JM, Vales T, Wang T, Winter D, Zhang Z, Clarke ND, Birney E, Iyer VR, Crawford GE, Lieb JD, Furey TS (2011) Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res 21(10):1757–67

    PubMed  CAS  Google Scholar 

  21. Tao Y, Xi S, Briones V, Muegge K (2010) Lsh mediated RNA polymerase II stalling at HoxC6 and HoxC8 involves DNA methylation. PLoS One 5(2):e9163

    PubMed  Google Scholar 

  22. Bauer AP, Leikam D, Krinner S, Notka F, Ludwig C, Langst G, Wagner R (2010) The impact of intragenic CpG content on gene expression. Nucleic Acids Res 38(12):3891–3908

    PubMed  CAS  Google Scholar 

  23. Schwartz S, Ast G (2010) Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing. Embo J 29(10):1629–1636

    PubMed  CAS  Google Scholar 

  24. Okitsu CY, Hsieh CL (2007) DNA methylation dictates histone H3K4 methylation. Mol Cell Biol 27(7):2746–2757

    PubMed  CAS  Google Scholar 

  25. Okitsu CY, Hsieh JC, Hsieh CL (2010) Transcriptional activity affects the H3K4me3 level and distribution in the coding region. Mol Cell Biol 30(12):2933–2946

    PubMed  CAS  Google Scholar 

  26. Lorincz MC, Dickerson DR, Schmitt M, Groudine M (2004) Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 11(11):1068–1075

    PubMed  CAS  Google Scholar 

  27. Deaton AM, Webb S, Kerr AR, Illingworth RS, Guy J, Andrews R, Bird A (2011) Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Genome Res 21(7):1074–1086

    PubMed  CAS  Google Scholar 

  28. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257

    PubMed  CAS  Google Scholar 

  29. Aporntewan C, Phokaew C, Piriyapongsa J, Ngamphiw C, Ittiwut C, Tongsima S, Mutirangura A (2011) Hypomethylation of intragenic LINE-1 represses transcription in cancer cells through AGO2. PLoS One 6(3):e17934

    PubMed  CAS  Google Scholar 

  30. Qu G, Grundy PE, Narayan A, Ehrlich M (1999) Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet Cytogenet 109:34–39

    PubMed  CAS  Google Scholar 

  31. Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300(5618):455

    PubMed  CAS  Google Scholar 

  32. Yamada Y, Jackson-Grusby L, Linhart H, Meissner A, Eden A, Lin H, Jaenisch R (2005) Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc Natl Acad Sci USA 102(38):13580–13585

    PubMed  CAS  Google Scholar 

  33. Cadieux B, Ching TT, Vandenberg SR, Costello JF (2006) Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Res 66(17):8469–8476

    PubMed  CAS  Google Scholar 

  34. Trejbalova K, Blazkova J, Matouskova M, Kucerova D, Pecnova L, Vernerova Z, Heracek J, Hirsch I, Hejnar J (2011) Epigenetic regulation of transcription and splicing of syncytins, fusogenic glycoproteins of retroviral origin. Nucleic Acids Res 39(20):8728–39

    PubMed  CAS  Google Scholar 

  35. Goering W, Ribarska T, Schulz WA (2011) Selective changes of retroelement expression in human prostate cancer. Carcinogenesis 32(10):1484–92

    PubMed  CAS  Google Scholar 

  36. Park SY, Yoo EJ, Cho NY, Kim N, Kang GH (2009) Comparison of CpG island hypermethylation and repetitive DNA hypomethylation in premalignant stages of gastric cancer, stratified for Helicobacter pylori infection. J Pathol 219(4):410–6

    PubMed  CAS  Google Scholar 

  37. Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32(3):e38

    PubMed  Google Scholar 

  38. Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, Fiala E, Ehrlich M, Laird PW (2005) Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 33(21):6823–6836

    PubMed  CAS  Google Scholar 

  39. Nishiyama R, Qi L, Tsumagari K, Dubeau L, Weissbecker K, Champagne M, Sikka S, Nagai H, Ehrlich M (2005) A DNA repeat, NBL2, is hypermethylated in some cancers but hypomethylated in others. Cancer Biol Ther 4(4):440–448

    PubMed  CAS  Google Scholar 

  40. Pulukuri SM, Estes N, Patel J, Rao JS (2007) Demethylation-linked activation of urokinase plasminogen activator is involved in progression of prostate cancer. Cancer Res 67(3): 930–939

    PubMed  CAS  Google Scholar 

  41. Clark SJ (2007) Action at a distance: epigenetic silencing of large chromosomal regions in carcinogenesis. Hum Mol Genet 16 Spec No 1:R88–95

    Google Scholar 

  42. Andrews J, Kennette W, Pilon J, Hodgson A, Tuck AB, Chambers AF, Rodenhiser DI (2010) Multi-platform whole-genome microarray analyses refine the epigenetic signature of breast cancer metastasis with gene expression and copy number. PLoS One 5(1):e8665

    PubMed  Google Scholar 

  43. Novak P, Jensen T, Oshiro MM, Watts GS, Kim CJ, Futscher BW (2008) Agglomerative epigenetic aberrations are a common event in human breast cancer. Cancer Res 68(20): 8616–8625

    PubMed  CAS  Google Scholar 

  44. Coolen MW, Stirzaker C, Song JZ, Statham AL, Kassir Z, Moreno CS, Young AN, Varma V, Speed TP, Cowley M, Lacaze P, Kaplan W, Robinson MD, Clark SJ (2010) Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat Cell Biol 12(3):235–246

    PubMed  CAS  Google Scholar 

  45. Yegnasubramanian S, Wu Z, Haffner MC, Esopi D, Aryee MJ, Badrinath R, He TL, Morgan JD, Carvalho B, Zheng Q, De Marzo AM, Irizarry RA, Nelson WG (2011) Chromosome-wide mapping of DNA methylation patterns in normal and malignant prostate cells reveals pervasive methylation of gene-associated and conserved intergenic sequences. BMC Genomics 12:313

    PubMed  CAS  Google Scholar 

  46. Widschwendter M, Jiang G, Woods C, Muller HM, Fiegl H, Goebel G, Marth C, Holzner EM, Zeimet AG, Laird PW, Ehrlich M (2004) DNA hypomethylation and ovarian cancer biology. Cancer Res 64(13):4472–4480

    PubMed  CAS  Google Scholar 

  47. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schubeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37(8):853–862

    PubMed  CAS  Google Scholar 

  48. Ehrlich M (2003) Expression of various genes is controlled by DNA methylation during mammalian development. J Cell Biochem 88:899–910

    PubMed  CAS  Google Scholar 

  49. Shen L, Kondo Y, Guo Y, Zhang J, Zhang L, Ahmed S, Shu J, Chen X, Waterland RA, Issa JP (2007) Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet 3(10):2023–2036

    PubMed  CAS  Google Scholar 

  50. Ortmann CA, Eisele L, Nuckel H, Klein-Hitpass L, Fuhrer A, Duhrsen U, Zeschnigk M (2008) Aberrant hypomethylation of the cancer-testis antigen PRAME correlates with PRAME expression in acute myeloid leukemia. Ann Hematol 87(10):809–818

    PubMed  CAS  Google Scholar 

  51. Milicic A, Harrison LA, Goodlad RA, Hardy RG, Nicholson AM, Presz M, Sieber O, Santander S, Pringle JH, Mandir N, East P, Obszynska J, Sanders S, Piazuelo E, Shaw J, Harrison R, Tomlinson IP, McDonald SA, Wright NA, Jankowski JA (2008) Ectopic expression of P-cadherin correlates with promoter hypomethylation early in colorectal carcinogenesis and enhanced intestinal crypt fission in vivo. Cancer Res 68(19):7760–7768

    PubMed  CAS  Google Scholar 

  52. Cheung HH, Davis AJ, Lee TL, Pang AL, Nagrani S, Rennert OM, Chan WY (2011) Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene 30(31):3404–3415

    PubMed  CAS  Google Scholar 

  53. Colaneri A, Staffa N, Fargo DC, Gao Y, Wang T, Peddada SD, Birnbaumer L (2011) Expanded methyl-sensitive cut counting reveals hypomethylation as an epigenetic state that highlights functional sequences of the genome. Proc Natl Acad Sci USA 108(23):9715–9720

    PubMed  CAS  Google Scholar 

  54. Kwon MJ, Shin YK (2011) Epigenetic regulation of cancer-associated genes in ovarian cancer. Int J Mol Sci 12(2):983–1008

    PubMed  CAS  Google Scholar 

  55. Laursen KB, Wong PM, Gudas LJ (2011) Epigenetic regulation by RAR{alpha} maintains ligand-independent transcriptional activity. Nucleic Acids Res 40(1):102–15

    PubMed  Google Scholar 

  56. Baba Y, Nosho K, Shima K, Huttenhower C, Tanaka N, Hazra A, Giovannucci EL, Fuchs CS, Ogino S (2010) Hypomethylation of the IGF2 DMR in colorectal tumors, detected by bisulfite pyrosequencing, is associated with poor prognosis. Gastroenterology 139(6):1855–1864

    PubMed  CAS  Google Scholar 

  57. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA, Haefliger C, Horton R, Howe K, Jackson DK, Kunde J, Koenig C, Liddle J, Niblett D, Otto T, Pettett R, Seemann S, Thompson C, West T, Rogers J, Olek A, Berlin K, Beck S (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38(12):1378–1385

    PubMed  CAS  Google Scholar 

  58. Smale ST (2010) Pioneer factors in embryonic stem cells and differentiation. Curr Opin Genet Dev 20(5):519–526

    PubMed  CAS  Google Scholar 

  59. Serandour AA, Avner S, Percevault F, Demay F, Bizot M, Lucchetti-Miganeh C, Barloy-Hubler F, Brown M, Lupien M, Metivier R, Salbert G, Eeckhoute J (2011) Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome Res 21(4): 555–565

    PubMed  CAS  Google Scholar 

  60. Xu J, Pope SD, Jazirehi AR, Attema JL, Papathanasiou P, Watts JA, Zaret KS, Weissman IL, Smale ST (2007) Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells. Proc Natl Acad Sci USA 104(30): 12377–12382

    PubMed  CAS  Google Scholar 

  61. Taube JH, Allton K, Duncan SA, Shen L, Barton MC (2010) Foxa1 functions as a pioneer transcription factor at transposable elements to activate Afp during differentiation of embryonic stem cells. J Biol Chem 285(21):16135–16144

    PubMed  CAS  Google Scholar 

  62. Magnani L, Eeckhoute J, Lupien M (2011) Pioneer factors: directing transcriptional regulators within the chromatin environment. Trends Genet 27(11):465–74

    PubMed  CAS  Google Scholar 

  63. Hatada I, Namihira M, Morita S, Kimura M, Horii T, Nakashima K (2008) Astrocyte-specific genes are generally demethylated in neural precursor cells prior to astrocytic differentiation. PLoS One 3(9):e3189

    PubMed  Google Scholar 

  64. Kalari S, Pfeifer GP (2010) Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. Adv Genet 70:277–308

    PubMed  CAS  Google Scholar 

  65. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205):766–770

    PubMed  CAS  Google Scholar 

  66. Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Kin Sung KW, Rigoutsos I, Loring J, Wei CL (2010) Dynamic changes in the human methylome during differentiation. Genome Res 20(3):320–331

    PubMed  CAS  Google Scholar 

  67. Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH, Xie B, Daley GQ, Church GM (2009) Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 27(4):361–368

    PubMed  CAS  Google Scholar 

  68. Wu H, Coskun V, Tao J, Xie W, Ge W, Yoshikawa K, Li E, Zhang Y, Sun YE (2010) Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329(5990):444–448

    PubMed  CAS  Google Scholar 

  69. Guo JU, Ma DK, Mo H, Ball MP, Jang MH, Bonaguidi MA, Balazer JA, Eaves HL, Xie B, Ford E, Zhang K, Ming GL, Gao Y, Song H (2011) Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 14(10):1345–1351

    PubMed  CAS  Google Scholar 

  70. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322

    PubMed  CAS  Google Scholar 

  71. De Bustos C, Ramos E, Young JM, Tran RK, Menzel U, Langford CF, Eichler EE, Hsu L, Henikoff S, Dumanski JP, Trask BJ (2009) Tissue-specific variation in DNA methylation levels along human chromosome 1. Epigenetics Chromatin 2(1):7

    PubMed  Google Scholar 

  72. Ke XS, Qu Y, Cheng Y, Li WC, Rotter V, Oyan AM, Kalland KH (2010) Global profiling of histone and DNA methylation reveals epigenetic-based regulation of gene expression during epithelial to mesenchymal transition in prostate cells. BMC Genomics 11:669

    PubMed  Google Scholar 

  73. Cheng X, Blumenthal RM (2010) Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry 49(14):2999–3008

    PubMed  CAS  Google Scholar 

  74. Stengel S, Fiebig U, Kurth R, Denner J (2010) Regulation of human endogenous retrovirus-K expression in melanomas by CpG methylation. Genes Chromosomes Cancer 49(5):401–411

    PubMed  CAS  Google Scholar 

  75. Appanah R, Dickerson DR, Goyal P, Groudine M, Lorincz MC (2007) An unmethylated 3’ promoter-proximal region is required for efficient transcription initiation. PLoS Genet 3(2):e27

    PubMed  Google Scholar 

  76. Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H, Yu Y, Hetzel JA, Kuo F, Kim J, Cokus SJ, Casero D, Bernal M, Huijser P, Clark AT, Kramer U, Merchant SS, Zhang X, Jacobsen SE, Pellegrini M (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466(7304):388–392

    PubMed  CAS  Google Scholar 

  77. Hodges E, Smith AD, Kendall J, Xuan Z, Ravi K, Rooks M, Zhang MQ, Ye K, Bhattacharjee A, Brizuela L, McCombie WR, Wigler M, Hannon GJ, Hicks JB (2009) High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res 19(9):1593–1605

    PubMed  CAS  Google Scholar 

  78. Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T (2011) Epigenetics in alternative pre-mRNA splicing. Cell 144(1):16–26

    PubMed  CAS  Google Scholar 

  79. Shing DC, Trubia M, Marchesi F, Radaelli E, Belloni E, Tapinassi C, Scanziani E, Mecucci C, Crescenzi B, Lahortiga I, Odero MD, Zardo G, Gruszka A, Minucci S, Di Fiore PP, Pelicci PG (2007) Overexpression of sPRDM16 coupled with loss of p53 induces myeloid leukemias in mice. J Clin Invest 117(12):3696–3707

    PubMed  CAS  Google Scholar 

  80. Chu D, Zhang Z, Zhou Y, Wang W, Li Y, Zhang H, Dong G, Zhao Q, Ji G (2011) Notch1 and Notch2 have opposite prognostic effects on patients with colorectal cancer. Ann Oncol 22(11):2440–7

    PubMed  CAS  Google Scholar 

  81. Figueroa JD, Flanders KC, Garcia-Closas M, Anderson WF, Yang XR, Matsuno RK, Duggan MA, Pfeiffer RM, Ooshima A, Cornelison R, Gierach GL, Brinton LA, Lissowska J, Peplonska B, Wakefield LM, Sherman ME (2010) Expression of TGF-beta signaling factors in invasive breast cancers: relationships with age at diagnosis and tumor characteristics. Breast Cancer Res Treat 121(3):727–735

    PubMed  CAS  Google Scholar 

  82. Tsumagari K, Chang S-C, Lacey M, Baribault C, Chittur SV, Sowden J, Tawil R, Crawford GE, Ehrlich M (2011) Gene expression during normal and FSHD myogenesis. BMC Medical Genomics 4:67

    PubMed  CAS  Google Scholar 

  83. Nagai H, Kim YS, Yasuda T, Ohmachi Y, Yokouchi H, Monden M, Emi M, Konishi N, Nogami M, Okumura K, Matsubara K (1999) A novel sperm-specific hypomethylation sequence is a demethylation hotspot in human hepatocellular carcinomas. Gene 237(1): 15–20

    PubMed  CAS  Google Scholar 

  84. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324(5929):929–930

    PubMed  CAS  Google Scholar 

  85. Li W, Liu M (2011) Distribution of 5-hydroxymethylcytosine in different human tissues. J Nucleic Acids 2011:870726

    PubMed  Google Scholar 

  86. Haffner MC, Chaux A, Meeker AK, Esopi DM, Gerber J, Pellakuru LG, Toubaji A, Argani P, Iacobuzio-Donahue C, Nelson WG, Netto GJ, De Marzo AM, Yegnasubramanian S (2011) Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget 2(8):627–37

    PubMed  Google Scholar 

  87. Stroud H, Feng S, Morey Kinney S, Pradhan S, Jacobsen SE (2011) 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 12(6):R54

    PubMed  CAS  Google Scholar 

  88. Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473(7347):398–402

    PubMed  CAS  Google Scholar 

  89. Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P, Tahiliani M, Daley GQ, Liu XS, Ecker JR, Milos PM, Agarwal S, Rao A (2011) Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473(7347):394–397

    PubMed  CAS  Google Scholar 

  90. Szulwach KE, Li X, Li Y, Song CX, Han JW, Kim S, Namburi S, Hermetz K, Kim JJ, Rudd MK, Yoon YS, Ren B, He C, Jin P (2011) Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet 7(6):e1002154

    PubMed  CAS  Google Scholar 

  91. Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang B, Godley LA, Hicks LM, Lahn BT, Jin P, He C (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29(1):68–72

    PubMed  CAS  Google Scholar 

  92. Robinson MD, Statham AL, Speed TP, Clark SJ (2010) Protocol matters: which methylome are you actually studying? Epigenomics 2(4):587–598

    PubMed  CAS  Google Scholar 

  93. Kinney SM, Chin HG, Vaisvila R, Bitinaite J, Zheng Y, Esteve PO, Feng S, Stroud H, Jacobsen SE, Pradhan S (2011) Tissue-specific distribution and dynamic changes of 5-hydroxymethylcytosine in mammalian genomes. J Biol Chem 286(28):24685–24693

    PubMed  CAS  Google Scholar 

  94. Jin SG, Wu X, Li AX, Pfeifer GP (2011) Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res 39(12):5015–5024

    PubMed  CAS  Google Scholar 

  95. Ehrlich M, Woods C, Yu M, Dubeau L, Yang F, Campan M, Weisenberger D, Long TI, Youn B, Fiala E, Laird P (2006) Quantitative analysis of association between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors. Oncogene 25:2636–2645

    PubMed  CAS  Google Scholar 

  96. Rodriguez J, Vives L, Jorda M, Morales C, Munoz M, Vendrell E, Peinado MA (2008) Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells. Nucleic Acids Res 36(3):770–784

    PubMed  CAS  Google Scholar 

  97. Kim MJ, White-Cross JA, Shen L, Issa JP, Rashid A (2009) Hypomethylation of long interspersed nuclear element-1 in hepatocellular carcinomas. Mod Pathol 22(3):442–449

    PubMed  CAS  Google Scholar 

  98. Roman AC, Gonzalez-Rico FJ, Molto E, Hernando H, Neto A, Vicente-Garcia C, Ballestar E, Gomez-Skarmeta JL, Vavrova-Anderson J, White RJ, Montoliu L, Fernandez-Salguero PM (2011) Dioxin receptor and SLUG transcription factors regulate the insulator activity of B1 SINE retrotransposons via an RNA polymerase switch. Genome Res 21(3):422–432

    PubMed  CAS  Google Scholar 

  99. Wang J, Lunyak VV, Jordan IK (2011) Genome-wide prediction and analysis of human chromatin boundary elements. Nucleic Acids Res 40(2):511–29

    PubMed  Google Scholar 

  100. Dante R, Dante-Paire J, Rigal D, Roizes G (1992) Methylation patterns of long interspersed repeated DNA and alphoid repetitive DNA from human cell lines and tumors. Anticancer Res 12(2):559–563

    PubMed  CAS  Google Scholar 

  101. Jurgens B, Schmitz-Drager BJ, Schulz WA (1996) Hypomethylation of L1 LINE sequences prevailing in human urothelial carcinoma. Cancer Res 56(24):5698–5703

    PubMed  CAS  Google Scholar 

  102. Florl AR, Lower R, Schmitz-Drager BJ, Schulz WA (1999) DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer 80(9):1312–1321

    PubMed  CAS  Google Scholar 

  103. Schulz WA, Steinhoff C, Florl AR (2006) Methylation of endogenous human retroelements in health and disease. Curr Top Microbiol Immunol 310:211–250

    PubMed  CAS  Google Scholar 

  104. Chan SW, Zilberman D, Xie Z, Johansen LK, Carrington JC, Jacobsen SE (2004) RNA silencing genes control de novo DNA methylation. Science 303(5662):1336

    PubMed  CAS  Google Scholar 

  105. Narayan A, Ji W, Zhang X-Y, Marrogi A, Graff JR, Baylin SB, Ehrlich M (1998) Hypomethylation of pericentromeric DNA in breast adenocarcinomas. Int J Cancer 77:833–838

    PubMed  CAS  Google Scholar 

  106. Qu G, Dubeau L, Narayan A, Yu M, Ehrlich M (1999) Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential. Mut Res 423:91–101

    CAS  Google Scholar 

  107. Bollati V, Fabris S, Pegoraro V, Ronchetti D, Mosca L, Deliliers GL, Motta V, Bertazzi PA, Baccarelli A, Neri A (2009) Differential repetitive DNA methylation in multiple myeloma molecular subgroups. Carcinogenesis 30(8):1330–1335

    PubMed  CAS  Google Scholar 

  108. Thoraval D, Asakawa J, Wimmer K, Kuick R, Lamb B, Richardson B, Ambros P, Glover T, Hanash S (1996) Demethylation of repetitive DNA sequences in neuroblastoma. Genes Chromosomes Cancer 17(4):234–244

    PubMed  CAS  Google Scholar 

  109. Nagai H, Baba M, Konishi N, Kim YS, Nogami M, Okumura K, Emi M, Matsubara K (1999) Isolation of NotI clusters hypomethylated in HBV-integrated hepatocellular carcinomas by two-dimensional electrophoresis. DNA Res 6(4):219–225

    PubMed  CAS  Google Scholar 

  110. Itano O, Ueda M, Kikuchi K, Hashimoto O, Hayatsu S, Kawaguchi M, Seki H, Aiura K, Kitajima M (2002) Correlation of postoperative recurrence in hepatocellular carcinoma with demethylation of repetitive sequences. Oncogene 21(5):789–797

    PubMed  CAS  Google Scholar 

  111. Katargin AN, Pavlova LS, Kisseljov FL, Kisseljova NP (2009) Hypermethylation of genomic 3.3-kb repeats is frequent event in HPV-positive cervical cancer. BMC Med Genomics 2:30

    PubMed  Google Scholar 

  112. Szpakowski S, Sun X, Lage JM, Dyer A, Rubinstein J, Kowalski D, Sasaki C, Costa J, Lizardi PM (2009) Loss of epigenetic silencing in tumors preferentially affects primate-specific retroelements. Gene 448(2):151–167

    PubMed  CAS  Google Scholar 

  113. Choi SH, Worswick S, Byun HM, Shear T, Soussa JC, Wolff EM, Douer D, Garcia-Manero G, Liang G, Yang AS (2009) Changes in DNA methylation of tandem DNA repeats are different from interspersed repeats in cancer. Int J Cancer 125(3):723–729

    PubMed  CAS  Google Scholar 

  114. Ehrlich M, Hopkins N, Jiang G, Dome JS, Yu MS, Woods CB, Tomlinson GE, Chintagumpala M, Champagne M, Diller L, Parham DM, Sawyer J (2003) Satellite hypomethylation in karyotyped Wilms tumors. Cancer Genet Cytogenet 141:97–105

    PubMed  CAS  Google Scholar 

  115. Jackson K, Yu M, Arakawa K, Fiala E, Youn B, Fiegl H, Muller-Holzner E, Widschwendter M, Ehrlich M (2004) DNA hypomethylation is prevalent even in low-grade breast cancers. Cancer Biol Ther 3(12):1225–1231

    PubMed  CAS  Google Scholar 

  116. Morey Kinney SR, Smiraglia DJ, James SR, Moser MT, Foster BA, Karpf AR (2008) Stage-specific alterations of DNA methyltransferase expression, DNA hypermethylation, and DNA hypomethylation during prostate cancer progression in the transgenic adenocarcinoma of mouse prostate model. Mol Cancer Res 6(8):1365–1374

    PubMed  CAS  Google Scholar 

  117. Kerbel RS, Frost P, Liteplo R, Carlow DA, Elliott BE (1984) Possible epigenetic mechanisms of tumor progression: induction of high-frequency heritable but phenotypically unstable changes in the tumorigenic and metastatic properties of tumor cell populations by 5-azacytidine treatment. J Cell Physiol Suppl 3:87–97

    PubMed  CAS  Google Scholar 

  118. Santourlidis S, Florl A, Ackermann R, Wirtz HC, Schulz WA (1999) High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate 39(3):166–174

    PubMed  CAS  Google Scholar 

  119. Itano O, Ueda M, Kikuchi K, Shimazu M, Kitagawa Y, Aiura K, Kitajima M (2000) A new predictive factor for hepatocellular carcinoma based on two- dimensional electrophoresis of genomic DNA. Oncogene 19(13):1676–1683

    PubMed  CAS  Google Scholar 

  120. Grunau C, Sanchez C, Ehrlich M, van der Bruggen P, Hindermann W, Rodriguez C, Krieger S, De Sario A (2005) Frequent DNA hypomethylation in the human juxtacentromeric BAGE loci in cancer. Genes Chrom Cancer 43(1):11–24

    PubMed  CAS  Google Scholar 

  121. Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo JA, Navarro G, San Jose-Eneriz E, Garate L, Cordeu L, Cervantes F, Prosper F, Heiniger A, Torres A (2008) Repetitive DNA hypomethylation in the advanced phase of chronic myeloid leukemia. Leuk Res 32(3): 487–490

    PubMed  CAS  Google Scholar 

  122. Yegnasubramanian S, Haffner MC, Zhang Y, Gurel B, Cornish TC, Wu Z, Irizarry RA, Morgan J, Hicks J, DeWeese TL, Isaacs WB, Bova GS, De Marzo AM, Nelson WG (2008) DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res 68(21):8954–8967

    PubMed  CAS  Google Scholar 

  123. Marchal R, Chicheportiche A, Dutrillaux B, Bernardino-Sgherri J (2004) DNA methylation in mouse gametogenesis. Cytogenet Genome Res 105(2–4):316–324

    PubMed  CAS  Google Scholar 

  124. Zhang X-Y, Loflin PT, Gehrke CW, Andrews PA, Ehrlich M (1987) Hypermethylation of human DNA sequences in embryonal carcinoma cells and somatic tissues but not sperm. Nucleic Acids Res 15:9429–9449

    PubMed  CAS  Google Scholar 

  125. Rubin CM, VandeVoort CA, Teplitz RL, Schmid CW (1994) Alu repeated DNAs are differentially methylated in primate germ cells. Nucleic Acids Res 22(23):5121–5127

    PubMed  CAS  Google Scholar 

  126. Dupressoir A, Heidmann T (1997) Expression of intracisternal A-particle retrotransposons in primary tumors of oncogene-expressing transgenic mice. Oncogene 14(24):2951–2958

    PubMed  CAS  Google Scholar 

  127. Smiraglia DJ, Szymanska J, Kraggerud SM, Lothe RA, Peltomaki P, Plass C (2002) Distinct epigenetic phenotypes in seminomatous and nonseminomatous testicular germ cell tumors. Oncogene 21(24):3909–3916

    PubMed  CAS  Google Scholar 

  128. Netto GJ, Nakai Y, Nakayama M, Jadallah S, Toubaji A, Nonomura N, Albadine R, Hicks JL, Epstein JI, Yegnasubramanian S, Nelson WG, De Marzo AM (2008) Global DNA hypomethylation in intratubular germ cell neoplasia and seminoma, but not in nonseminomatous male germ cell tumors. Mod Pathol 21(11):1337–1344

    PubMed  CAS  Google Scholar 

  129. Laird CD, Pleasant ND, Clark AD, Sneeden JL, Hassan KM, Manley NC, Vary JC Jr, Morgan T, Hansen RS, Stoger R (2004) Hairpin-bisulfite PCR: assessing epigenetic methylation patterns on complementary strands of individual DNA molecules. Proc Natl Acad Sci USA 101(1):204–209

    PubMed  CAS  Google Scholar 

  130. Jiang G, Yang F, van Overveld PG, Vedanarayanan V, van der Maarel S, Ehrlich M (2003) Testing the position-effect variegation hypothesis for facioscapulohumeral muscular dystrophy by analysis of histone modification and gene expression in subtelomeric 4q. Hum Mol Genet 12:2909–2921

    PubMed  CAS  Google Scholar 

  131. Zeng W, de Greef JC, Chen YY, Chien R, Kong X, Gregson HC, Winokur ST, Pyle A, Robertson KD, Schmiesing JA, Kimonis VE, Balog J, Frants RR, Ball AR Jr, Lock LF, Donovan PJ, van der Maarel SM, Yokomori K (2009) Specific loss of histone H3 lysine 9 trimethylation and HP1gamma/cohesin binding at D4Z4 repeats is associated with facioscapulohumeral dystrophy (FSHD). PLoS Genet 5(7):e1000559

    PubMed  Google Scholar 

  132. Shao C, Lacey M, Dubeau L, Ehrlich M (2009) Hemimethylation footprints of DNA demethylation in cancer. Epigenetics 4(3):165–175

    PubMed  CAS  Google Scholar 

  133. Lau S, Jardine K, McBurney MW (1999) DNA methylation pattern of a tandemly repeated LacZ transgene indicates that most copies are silent. Dev Dyn 215(2):126–138

    PubMed  CAS  Google Scholar 

  134. Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 99(6):3740–3745

    PubMed  CAS  Google Scholar 

  135. Hu JL, Zhou BO, Zhang RR, Zhang KL, Zhou JQ, Xu GL (2009) The N-terminus of histone H3 is required for de novo DNA methylation in chromatin. Proc Natl Acad Sci USA 106(52):22187–22192

    PubMed  CAS  Google Scholar 

  136. Schulte JH, Lim S, Schramm A, Friedrichs N, Koster J, Versteeg R, Ora I, Pajtler K, Klein-Hitpass L, Kuhfittig-Kulle S, Metzger E, Schule R, Eggert A, Buettner R, Kirfel J (2009) Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer Res 69(5):2065–2071

    PubMed  CAS  Google Scholar 

  137. Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W, Chang H, Xu G, Gaudet F, Li E, Chen T (2009) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41(1):125–129

    PubMed  CAS  Google Scholar 

  138. Zampieri M, Passananti C, Calabrese R, Perilli M, Corbi N, De Cave F, Guastafierro T, Bacalini MG, Reale A, Amicosante G, Calabrese L, Zlatanova J, Caiafa P (2009) Parp1 localizes within the Dnmt1 promoter and protects its unmethylated state by its enzymatic activity. PLoS One 4(3):e4717

    PubMed  Google Scholar 

  139. Ostler KR, Davis EM, Payne SL, Gosalia BB, Exposito-Cespedes J, Le Beau MM, Godley LA (2007) Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins. Oncogene 26(38):5553–5563

    PubMed  CAS  Google Scholar 

  140. Lopez de Silanes I, Gorospe M, Taniguchi H, Abdelmohsen K, Srikantan S, Alaminos M, Berdasco M, Urdinguio RG, Fraga MF, Jacinto FV, Esteller M (2009) The RNA-binding protein HuR regulates DNA methylation through stabilization of DNMT3b mRNA. Nucleic Acids Res 37(8):2658–2671

    PubMed  CAS  Google Scholar 

  141. Shukla V, Coumoul X, Lahusen T, Wang RH, Xu X, Vassilopoulos A, Xiao C, Lee MH, Man YG, Ouchi M, Ouchi T, Deng CX (2010) BRCA1 affects global DNA methylation through regulation of DNMT1. Cell Res 20(11):1201–1215

    PubMed  CAS  Google Scholar 

  142. Felle M, Joppien S, Nemeth A, Diermeier S, Thalhammer V, Dobner T, Kremmer E, Kappler R, Langst G (2011) The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1. Nucleic Acids Res 39(19):8355–65

    PubMed  CAS  Google Scholar 

  143. Sharma S, De Carvalho DD, Jeong S, Jones PA, Liang G (2011) Nucleosomes containing methylated DNA stabilize DNA methyltransferases 3A/3B and ensure faithful epigenetic inheritance. PLoS Genet 7(2):e1001286

    PubMed  CAS  Google Scholar 

  144. Chen ZX, Riggs AD (2011) DNA methylation and demethylation in mammals. J Biol Chem 286(21):18347–18353

    PubMed  CAS  Google Scholar 

  145. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047):1303–1307

    PubMed  CAS  Google Scholar 

  146. Kress C, Thomassin H, Grange T (2006) Active cytosine demethylation triggered by a nuclear receptor involves DNA strand breaks. Proc Natl Acad Sci USA 103(30):11112–11117

    PubMed  CAS  Google Scholar 

  147. Bhutani N, Burns DM, Blau HM (2011) DNA demethylation dynamics. Cell 146(6): 866–872

    PubMed  CAS  Google Scholar 

  148. Inoue A, Zhang Y (2011) Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334(6053):194

    PubMed  CAS  Google Scholar 

  149. Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226

    PubMed  CAS  Google Scholar 

  150. Riggs AD (1975) X chromosome inactivation, differentiation and DNA methylation. Cytogenet Cell Genet 14:9–25

    PubMed  CAS  Google Scholar 

  151. Jones PA, Liang G (2009) Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10(11):805–811

    PubMed  CAS  Google Scholar 

  152. Otto SP, Walbot V (1990) DNA methylation in eukaryotes: kinetics of demethylation and de novo methylation during the life cycle. Genetics 124(2):429–437

    PubMed  CAS  Google Scholar 

  153. Pfeifer GP, Steigerwald SD, Hansen RS, Gartler SM, Riggs AD (1990) Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proc Natl Acad Sci USA 87(21):8252–8256

    PubMed  CAS  Google Scholar 

  154. Nicolas P, Kim KM, Shibata D, Tavare S (2007) The stem cell population of the human colon crypt: analysis via methylation patterns. PLoS Comput Biol 3(3):e28

    PubMed  Google Scholar 

  155. Sontag LB, Lorincz MC, Georg Luebeck E (2006) Dynamics, stability and inheritance of somatic DNA methylation imprints. J Theor Biol 242(4):890–899

    PubMed  CAS  Google Scholar 

  156. Genereux DP, Miner BE, Bergstrom CT, Laird CD (2005) A population-epigenetic model to infer site-specific methylation rates from double-stranded DNA methylation patterns. Proc Natl Acad Sci USA 102(16):5802–5807

    PubMed  CAS  Google Scholar 

  157. Lacey M, Ehrlich M (2009) Modeling dependence in methylation patterns with application to ovarian carcinomas. Stat Appl Genet Mol Biol 8(1):40

    Google Scholar 

  158. Saluz HP, Jiricny J, Jost JP (1986) Genomic sequencing reveals a positive correlation between the kinetics of strand-specific DNA demethylation of the overlapping estradiol/glucocorticoid-receptor binding sites and the rate of avian vitellogenin mRNA synthesis. Proc Natl Acad Sci USA 83(19):7167–7171

    PubMed  CAS  Google Scholar 

  159. Paroush Z, Keshet I, Yisraeli J, Cedar H (1990) Dynamics of demethylation and activation of the alpha-actin gene in myoblasts. Cell 63(6):1229–1237

    PubMed  CAS  Google Scholar 

  160. Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, Laird PW, Jones PA (2002) Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22(2):480–491

    PubMed  CAS  Google Scholar 

  161. Chen T, Hevi S, Gay F, Tsujimoto N, He T, Zhang B, Ueda Y, Li E (2007) Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nat Genet 39(3): 391–396

    PubMed  CAS  Google Scholar 

  162. Gehring M, Reik W, Henikoff S (2009) DNA demethylation by DNA repair. Trends Genet 25(2):82–90

    PubMed  CAS  Google Scholar 

  163. Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43:143–166

    PubMed  CAS  Google Scholar 

  164. Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM (2010) Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463(7284): 1042–1047

    PubMed  CAS  Google Scholar 

  165. Kress C, Thomassin H, Grange T (2001) Local DNA demethylation in vertebrates: how could it be performed and targeted? FEBS Lett 494(3):135–140

    PubMed  CAS  Google Scholar 

  166. Meilinger D, Fellinger K, Bultmann S, Rothbauer U, Bonapace IM, Klinkert WE, Spada F, Leonhardt H (2009) Np95 interacts with de novo DNA methyltransferases, Dnmt3a and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in embryonic stem cells. EMBO Rep 10(11):1259–1264

    PubMed  CAS  Google Scholar 

  167. Jeong S, Liang G, Sharma S, Lin JC, Choi SH, Han H, Yoo CB, Egger G, Yang AS, Jones PA (2009) Selective anchoring of DNA methyltransferases 3A and 3B to nucleosomes containing methylated DNA. Mol Cell Biol 29(19):5366–5376

    PubMed  CAS  Google Scholar 

  168. Hervouet E, Lalier L, Debien E, Cheray M, Geairon A, Rogniaux H, Loussouarn D, Martin SA, Vallette FM, Cartron PF (2010) Disruption of Dnmt1/PCNA/UHRF1 interactions promotes tumorigenesis from human and mice glial cells. PLoS One 5(6):e11333

    PubMed  Google Scholar 

  169. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89:1827–1831

    PubMed  CAS  Google Scholar 

  170. Valinluck V, Sowers LC (2007) Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res 67(3):946–950

    PubMed  CAS  Google Scholar 

  171. Burden AF, Manley NC, Clark AD, Gartler SM, Laird CD, Hansen RS (2005) Hemimethylation and non-CpG methylation levels in a promoter region of human LINE-1 (L1) repeated elements. J Biol Chem 280(15):14413–14419

    PubMed  CAS  Google Scholar 

  172. Turker MS (2002) Gene silencing in mammalian cells and the spread of DNA methylation. Oncogene 21(35):5388–5393

    PubMed  CAS  Google Scholar 

  173. Yan PS, Shi H, Rahmatpanah F, Hsiau TH, Hsiau AH, Leu YW, Liu JC, Huang TH (2003) Differential distribution of DNA methylation within the RASSF1A CpG island in breast cancer. Cancer Res 63(19):6178–6186

    PubMed  CAS  Google Scholar 

  174. Nguyen C, Liang G, Nguyen TT, Tsao-Wei D, Groshen S, Lubbert M, Zhou JH, Benedict WF, Jones PA (2001) Susceptibility of nonpromoter CpG islands to de novo methylation in normal and neoplastic cells. J Natl Cancer Inst 93(19):1465–1472

    PubMed  CAS  Google Scholar 

  175. Stirzaker C, Song JZ, Davidson B, Clark SJ (2004) Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells. Cancer Res 64(11):3871–3877

    PubMed  CAS  Google Scholar 

  176. Homma N, Tamura G, Honda T, Matsumoto Y, Nishizuka S, Kawata S, Motoyama T (2006) Spreading of methylation within RUNX3 CpG island in gastric cancer. Cancer Sci 97(1): 51–56

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by grants from the Louisiana Cancer Research Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Ehrlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ehrlich, M., Lacey, M. (2013). DNA Hypomethylation and Hemimethylation in Cancer. In: Karpf, A. (eds) Epigenetic Alterations in Oncogenesis. Advances in Experimental Medicine and Biology, vol 754. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9967-2_2

Download citation

Publish with us

Policies and ethics