Skip to main content

The Psychophysics of Binocular Vision

  • Chapter
  • First Online:

Abstract

This chapter reviews psychophysical research on human stereoscopic processes and their relationship to a 3D-TV system with DIBR. Topics include basic physiology, binocular correspondence and the horopter, stereoacuity and fusion limits, non-corresponding inputs and rivalry, dynamic cues to depth and their interactions with disparity, and development and adaptability of the binocular system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Throughout this chapter, 3D refers to stereoscopic imaging.

  2. 2.

    Researchers in human visual perception specify the size of distal objects, the extent of visual space, and binocular disparities in terms of their angular extent at the eye rather than linear measurements such as display-screen units like pixels. See Harris [14] for a description. For reference, a 1 cm wide object 57 cm from the eye subtends approximately 1 degree of visual angle.

References

  1. Freeman J, Avons S (2000) Focus group exploration of presence through advanced broadcast services. Proc SPIE 3959:530–539

    Google Scholar 

  2. Shibata T, Kurihara S, Kawai T, Takahashi T, Shimizu T, Kawada R, Ito A, Häkkinen J, Takatalo J, Nyman G (2009) Evaluation of stereoscopic image quality for mobile devices using interpretation based quality methodology. Proc SPIE 7237:72371E. doi:10.1117/12.807080

    Google Scholar 

  3. Fehn C, De La Barre R, Pastoor S (2006) Interactive 3D-TV—concepts and key technologies. Proc IEEE 94(3):524–538. doi:10.1109/JPROC.2006.870688

    Google Scholar 

  4. Zhang L, Vázquez C, Knorr S (2011) 3D-TV content creation: automatic 2D-3D video conversion. IEEE T Broad 57(2):372–383

    Google Scholar 

  5. Yano S, Ide S, Mitsuhashi T, Thwaites H (2002) A study of visual fatigue and visual comfort for 3D HDTV/HDTV images. Displays 23:191–201. doi:10.1016/S0141-9382(02)00038-0

    Google Scholar 

  6. Nojiri Y, Yamanoue H, Hanazato A, Okana F (2003) Measurement of parallax distribution, and its application to the analysis of visual comfort for stereoscopic HDTV. Proc SPIE 5006:195–205. doi:10.1117/12.474146

    Google Scholar 

  7. Nojiri Y, Yamanoue S, Ide S, Yano S, Okana F (2006) Parallax distributions and visual comfort on stereoscopic HDTV. Proc IBC 2006:373–380

    Google Scholar 

  8. Patterson R, Silzars A (2009) Immersive stereo displays, intuitive reasoning, and cognitive engineering. J SID 17(5):443–448. doi:10.1889/JSID17.5.443

    Google Scholar 

  9. Meesters LMJ, IJsselsterijn WA, Seuntiëns PJH (2004) A survey of perceptual evaluations and requirements of three-dimensional TV. IEEE T Circuits Syst 14(3):381–391. doi:10.1109/TCSVT.2004.823398

    Google Scholar 

  10. Lambooij M, IJsselsteijn W, Fortuin M, Heynderickx I (2009) Visual discomfort and visual fatigue of stereoscopic displays: a review. J Imaging Sci Tech 53(3):030201–0302014. doi:10.2352/J.ImagingSci.Technol.2009.53.3.030201

    Google Scholar 

  11. Daly SJ, Held R, Hoffman DM (2011) Perceptual issues in stereoscopic signal processing. IEEE T Broadcast 57(2):347–361. doi:10.1109/TBC.2011.2127630

    Google Scholar 

  12. Tam WJ, Speranza F, Yano S, Shimono K, Ono H (2011) Stereoscopic 3D-TV: visual comfort. IEEE T Broad 57(2):335–346. doi:10.1109/TBC.2005.846190

    Google Scholar 

  13. Zhang L, Tam WJ (2005) Stereoscopic image generation based on depth images for 3D TV. IEEE T Broad 51(2):191–199. doi:10.1109/TBC.2005.846190

    Google Scholar 

  14. Harris JM (2010) Monocular zones in stereoscopic scenes: a useful source of information for human binocular vision? Proc SPIE 7524:1–11. doi:10.1117/12.837465

    Google Scholar 

  15. Grove PM, Ashida H, Kaneko H, Ono H (2008) Interocular transfer of a rotational motion aftereffect as a function of eccentricity. Percept 37:1152–1159. doi:10.1068/p5771

    Google Scholar 

  16. Mather G (2006) Foundations of perception. Psychology Press, New York

    Google Scholar 

  17. Hennessy RT, Iida T, Shina K, Leibowitz HW (1976) The effect of pupil size on accommodation. Vis Res 16:587–589. doi:10.1016/0042-6989(76)90004-3

    Google Scholar 

  18. Allison RS (2007) Analysis of the influence of vertical disparities arising in toed-in stereoscopic cameras. J Imaging Sci and Tech 51(4):317–327

    Google Scholar 

  19. Kertesz AE, Sullivan MJ (1978) The effect of stimulus size on human cyclofusional response. Vis Res 18(5):567–571. doi:10.1016/0042-6989(78)90204-3

    Google Scholar 

  20. Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300:5–25. doi:10.1002/cne.903000103

    Google Scholar 

  21. Mariotte E (1665) A new discovery touching vision. Philos Trans v 3:668–669

    Google Scholar 

  22. Steinman SB, Steinman BA, Garzia RP (2000) Foundations of binocular vision: a clinical perspective. McGraw-Hill, New York

    Google Scholar 

  23. Hubel DH, Wiesel TN (1959) Receptive fields of single neurons in the cat’s visual cortex. J Physiol 148:574–591

    Google Scholar 

  24. Barlow HB, Blakemore C, Pettigrew JD (1967) The neural mechanisms of binocular depth discrimination. J Physiol 193:327–342

    Google Scholar 

  25. Howard IP (2002) Seeing in depth vol 1 basic mechanisms. Porteous, Toronto

    Google Scholar 

  26. Nagahama Y, Takayama Y, Fukuyama H, Yamauchi H, Matsuzaki S, Magata MY, Shibasaki H, Kimura J (1996) Functional anatomy on perception of position and motion in depth. Neuroreport 7(11):1717–1721

    Google Scholar 

  27. Vieth G (1818) Über die Richtung der Augen. Ann Phys 58(3):233–253

    Google Scholar 

  28. Müller J (1826) Zur vergleichenden Physiologie des Gesichtssinnes des Menschen und der Thiere. Cnobloch, Leipzig

    Google Scholar 

  29. Howarth PA (2011) The geometric horopter. Vis Res 51:397–399. doi:10.1016/j.visres.2010.12.018

    Google Scholar 

  30. Ames A, Ogle KN, Gliddon GH (1932) Corresponding retinal points, the horopter, and size and shape of ocular images. J Opt Soc Am 22:575–631

    Google Scholar 

  31. Shipley T, Rawlings SC (1970) The nonius horopter—II. An experimental report. Vis Res 10(11):1263–1299. doi:10.1016/0042-6989(70)90040-4

    Google Scholar 

  32. Helmholtz H (1925) Helmholtz’s treatise on physiological optics. In: Southall JPC (ed) Hanbuch der physiologischen optic, vol 3. Optical Society of America, New York

    Google Scholar 

  33. Ledgeway T, Rogers BJ (1999) The effects of eccentricity and vergence angle upon the relative tilt of corresponding vertical and horizontal meridian revealed using the minimum motion paradigm. Percept 28:143–153. doi:10.1068/p2738

    Google Scholar 

  34. Siderov J, Harwerth RS, Bedell HE (1999) Stereopsis, cyclovergence and the backwards tilt of the vertical horopter. Vis Res 39(7):1247–1357. doi:10.1016/S0042-6989(98)00252-1

    Google Scholar 

  35. Grove PM, Kaneko H, Ono H (2001) The backward inclination of a surface defined by empirical corresponding points. Percept 30:411–429. doi:10.1068/p3091

    Google Scholar 

  36. Schreiber KM, Hillis JM, Filippini HR, Schor CM, Banks MS (2008) The surface of the empirical horopter. J Vis 8(3):1–20. doi:10.1167/8.3.7

    Google Scholar 

  37. Cooper EA, Burge J, Banks MS (2011) The vertical horopter is not adaptable, but it may be adaptive. J Vis 11(3):1–19. doi:10.1167/11.3.20

    Google Scholar 

  38. Fischer FP (1924) III. Experimentelle Beitraege zum Gegriff der Sehrichtungsgemeinschaft der Netzhaute auf Grund der Binokularen Noniusmethode. In: Tschermak A (ed) Fortgesetzte Studien uber Binokularsehen. Pflugers Archiv fur die Gesamte Physiologie des Menschen und der Tiere vol 204, pp 234–246

    Google Scholar 

  39. Ankrum DR, Hansen EE, Nemeth KJ (1995) The vertical horopter and the angle of view. In: Greico A, Molteni G, Occhipinti E, Picoli B (eds) Work with display units 94. Elsevier, New York

    Google Scholar 

  40. Cogen A (1979) The relationship between the apparent vertical and the vertical horopter. Vis Res 19(6):655–665. doi:10.1016/0042-6989(79)90241-4

    Google Scholar 

  41. Howard IP, Rogers BJ (2002) Seeing in depth vol 2 depth perception. Porteous, Toronto

    Google Scholar 

  42. Westheimer G, McKee SP (1978) Stereoscopic acuity for moving retinal images. J Opt Soc Am 68(4):450–455. doi:10.1364/JOSA/68.000450

    Google Scholar 

  43. Morgan MJ, Castet E (1995) Stereoscopic depth perception at high velocities. Nature 378:380–383. doi:10.1038/378380a0

    Google Scholar 

  44. Rawlings SC, Shipley T (1969) Stereoscopic activity and horizontal angular distance from fixation. J Opt Soc Am 59:991–993

    Google Scholar 

  45. Fendick M, Westheimer G (1983) Effects of practice and the separation of test targets on foveal and peripheral stereoacuity. Vis Res 23(2):145–150. doi:10.1016/0042-6989(83)90137-2

    Google Scholar 

  46. Blakemore C (1970) The range and scope of binocular depth discrimination in man. J Physiol 211:599–622

    Google Scholar 

  47. Patterson R, Fox R (1984) The effect of testing method on stereoanomoly. Vis Res 24(5):403–408. doi:10.1016/0042-6989(84)90038-5

    Google Scholar 

  48. Tam WJ, Stelmach LB (1998) Display duration and stereoscopic depth discrimination. Can J Exp Psychol 52(1):56–61

    Google Scholar 

  49. Panum PL (1858) Physiologische Untersuchungen über das Sehen mit zwei Augen. Keil, Schwers

    Google Scholar 

  50. Speranza F, Tam WJ, Renaud R, Hur N (2006) Effect of disparity and motion on visual comfort of stereoscopic images. Proc SPIE 6055:60550B. doi:10.1117/12.640865

    Google Scholar 

  51. Wopking M (1995) Visual comfort with stereoscopic pictures: an experimental study on the subjective effects of disparity magnitude and depth of focus. J SID 3:1010–1103. doi:10.1889/1.1984948

    Google Scholar 

  52. Ogle KN (1952) On the limits of stereoscopic vision. J Exp Psychol 44(4):253–259. doi:10.1037/h0057643

    Google Scholar 

  53. Grove PM, Finlayson NJ, Ono H (2011) The effect of stimulus size on stereoscopic fusion limits and response criteria. i-Percept 2(4):401. doi:10.1068/ic401

    Google Scholar 

  54. Schor CM, Wood IC, Ogawa J (1984) Binocular sensory fusion is limited by spatial resolution. Vis Res 24(7):661–665. doi:10.1016/0042-6989(84)90207-4

    Google Scholar 

  55. Howard IP, Duke PA (2003) Monocular transparency generates quantitative depth. Vis Res 43(25):2615–2621. doi:10.1016/S0042-6989(03)00477-2

    Google Scholar 

  56. Grove PM, Sachtler WL, Gillam BJ (2006) Amodal completion with the background determines depth from monocular gap stereopsis. Vis Res 46:3771–3774. doi:10.1016/j.visres.2006.06.020

    Google Scholar 

  57. Seigel M, Nagata S (2000) Just enough reality: comfortable 3-D viewing via microstereopsis. IEEE T Circuits Syst 10(3):387–396. doi:10.1109/76.836283

    Google Scholar 

  58. Howard IP, Fang X, Allison RS, Zacher JE (2000) Effects of stimulus size and eccentricity on horizontal and vertical vergence. Exp Brain Res 130:124–132. doi:10.1007/s002210050014

    Google Scholar 

  59. Speranza F, Wilcox LM (2002) Viewing stereoscopic images comfortably: the effects of whole-field vertical disparity. Proc SPIE 4660:18–25. doi:10.1117/12.468047

    Google Scholar 

  60. Kooi FL, Toet A (2004) Visual comfort of binocular and 3D displays. Displays 25(2–3):99–108. doi:10.1016/j.displa.2004.07.004

    Google Scholar 

  61. Stelmach L, Tam WJ, Speranza F, Renaud R, Martin T (2003) Improving the visual comfort of stereoscopic images. Proc SPIE 5006:269–282. doi:10.1117/12.474093

    Google Scholar 

  62. Burt P, Julesz B (1980) A disparity gradient limit for binocular fusion. Science 208(4444):615–617. doi:10.1126/science.7367885

    Google Scholar 

  63. Levelt WJM (1968) On binocular rivalry. Mouton, The Hauge

    Google Scholar 

  64. Alais D, Blake R (2005) Binocular rivalry. MIT Press, Cambridge

    Google Scholar 

  65. Humphriss D (1982) The psychological septum. An investigation into its function. Am J Optom Physiol Opt 59(8):639–641

    Google Scholar 

  66. Ono H, Lillakas L, Grove PM, Suzuki M (2003) Leonardo’s constraint: two opaque objects cannot be seen in the same direction. J Exp Psychol: Gen 132(2):253–265. doi:10.1037/0096-3445.132.2.253

    Google Scholar 

  67. Arnold DH, Grove PM, Wallis TSA (2007) Staying focused: a functional account of perceptual suppression during binocular rivalry. J Vis 7(7):1–8. doi:10.1167/7.7.7

    Google Scholar 

  68. Seuntiens P, Meesters L, IJsselsteijn W (2006) Perceived quality of compressed stereoscopic images: effects of symmetric and asymmetric JPEG coding and camera separation. ACM Trans Appl Percept 3(2):95–109. doi:10.1145/1141897.1141899

    Google Scholar 

  69. Meegan DV, Stelmach LB, Tam WJ (2001) Unequal weighting of monocular inputs in binocular combination: implications for the compression of stereoscopic imagery. J Exp Psychol Appl 7:143–153. doi:10.1037/1076-898X.7.2.143

    Google Scholar 

  70. Shimojo S, Nakayama K (1990) Real world occlusion constraints and binocular rivalry. Vis Res 30:69–80. doi:10.1016/0042-6989(90)90128-8

    Google Scholar 

  71. Wilcox L, Lakra DC (2007) Depth from binocular half-occlusions in stereoscopic images of natural scenes. Percept 36:830–839. doi:10.1068/p5708

    Google Scholar 

  72. Gillam B, Borsting E (1988) The role of monocular regions in stereoscopic displays. Percept 17(5):603–608. doi:10.1068p170603

    Google Scholar 

  73. Grove PM, Ono H (1999) Ecologically invalid monocular texture leads to longer perceptual latencies in random-dot stereograms. Percept 28:627–639. doi:10.1068/p2908

    Google Scholar 

  74. Grove PM, Gillam B, Ono H (2002) Content and context of monocular regions determine perceived depth in random dot, unpaired background and phantom stereograms. Vis Res 42(15):1859–1870. doi:10.1016/S0042-6989(02)00083-4

    Google Scholar 

  75. Grove PM, Brooks K, Anderson BL, Gillam BJ (2006) Monocular transparency and unpaired stereopsis. Vis Res 46(18):3042–3053. doi:10.1016/j.visres.2006.05.003

    Google Scholar 

  76. Gillam B, Blackburn S, Nakayama K (1999) Stereopsis based on monocular gaps: metrical encoding of depth and slant without matching contours. Vis Res 39(3):493–502. doi:10.1016/S0042-6989(98)00131-X

    Google Scholar 

  77. Forte J, Peirce JW, Lennie P (2002) Binocular integration of partially occluded surfaces. Vis Res 42(10):1225–1235. doi:10.1016/S0042-6989(02)00053-6

    Google Scholar 

  78. Nakayama K, Shimojo S (1990) Da Vinci stereopsis: depth and subjective occluding contours from unpaired image points. Vis Res 30:1811–1825. doi:10.1016/0042-6989(90)90161-D

    Google Scholar 

  79. Anderson BL (1994) The role of partial occlusion in stereopsis. Nature 367:365–368. doi:10.1038/367365a0

    Google Scholar 

  80. Liu L, Stevenson SB, Schor CM (1994) Quantitative stereoscopic depth without binocular correspondence. Nature 267(6458):66–69. doi:10.1038/367066a0

    Google Scholar 

  81. Gillam B, Nakayama K (1999) Quantitative depth for a phantom surface can be based on cyclopean occlusion cues alone. Vis Res 39:109–112. doi:10.1016/S0042-6989(98)00052-2

    Google Scholar 

  82. Tsirlin I, Wilcox LM, Allison RS (2010) Monocular occlusions determine the perceived shape and depth of occluding surfaces. J Vis 10(6):1–12. doi:10.1167/10.6.11

    Google Scholar 

  83. Harris JM, Wilcox LM (2009) The role of monocularly visible regions in depth and surface perception. Vis Res 49:2666–2685. doi:10.1016/j.visres.2009.06.021

    Google Scholar 

  84. Häkkinen J, Nyman G (1997) Occlusion constraints and stereoscopic slant. Percept 26:29–38. doi:10.1068/p260029

    Google Scholar 

  85. Grove PM, Kaneko H, Ono H (2003) T-junctions and perceived slant of partially occluded surfaces. Percept 32:1451–1464. doi:10.1068/p5054

    Google Scholar 

  86. Gillam B, Grove PM (2004) Slant or occlusion: global factors resolve stereoscopic ambiguity in sets of horizontal lines. Vis Res 44(20):2359–2366. doi:10.1016/j.visres.2004.05.002

    Google Scholar 

  87. Grove PM, Byrne JM, Gillam B (2005) How configurations of binocular disparity determine whether stereoscopic slant or stereoscopic occlusion is seen. Percept 34:1083–1094. doi:10.1068/p5274

    Google Scholar 

  88. Ohtsuka S, Ishigure Y, Janatsugu Y, Yoshida T, Usui S (1996) Virtual window: a technique for correcting depth-perception distortion in stereoscopic displays. Soc Inform Disp Symp Dig 27:893–898

    Google Scholar 

  89. Mendiburu B (2009) 3D movie making: stereoscopic digital cinema from script to screen. Focal Press, Oxford

    Google Scholar 

  90. Liu J (1995) Stereo image compression—the importance of spatial resolution in half occluded regions. Proc SPIE 2411:271–276. doi:10.1117/12.207545

    Google Scholar 

  91. Palmer SE (1999) Vision science: photons to phenomenology. MIT Press, Cambridge

    Google Scholar 

  92. Yamanoue H (1997) The relation between size distortion and shooting conditions for stereoscopic images. SMPTE J 106:225–232. doi:10.5594/L00566

    Google Scholar 

  93. Yamanoue H, Okui M, Okano F (2006) Geometrical analysis of puppet-theatre and cardboard effects in stereoscopic HDTV images. IEEE T Circuits Tech 16(6):744–752. doi:10.1109/TCSVT.2006.875213

    Google Scholar 

  94. Sato T, Kitazaki M (1999) Cardboard cut-out phenomenon in virtual-reality environment. Percept 28:125 ECVP abstract supplement

    Google Scholar 

  95. Rogers BJ (2002) Charles wheatstone and the cardboard cut-out phenomenon. Percept 31:58 ECVP abstract supplement

    Google Scholar 

  96. Gillam B, Palmisano SA, Govan DG (2011) Depth interval estimates from motion parallax and binocular disparity beyond interaction space. Percept 40:39–49. doi:10.1068/p6868

    Google Scholar 

  97. Bradshaw MF, Rogers BJ (1999) Sensitivity to horizontal and vertical corrugations defined by binocular disparity. Vis Res 39(18):3049–3056. doi:10.1016/S0042-6989(99)00015-2

    Google Scholar 

  98. Cornilleau-Pérès V, Droulez J (1994) The visual perception of three-dimensional shape from self-motion and object-motion. Vis Res 34(18):2331–2336. doi:10.1016/0042-6989(94)90279-8

    Google Scholar 

  99. Ono H, Ujike H (2005) Motion parallax driven by head movements: Conditions for visual stability, perceived depth, and perceived concomitant motion. Percept 24:477–490. doi:10.1068/p5221

    Google Scholar 

  100. Ono H, Wade N (2006) Depth and motion perceptions produced by motion parallax. Teach Psychol 33:199–202

    Google Scholar 

  101. Ono H, Rogers BJ, Ohmi M (1988) Dynamic occlusion and motion parallax in depth perception. Percept 17:255–266. doi:10.1068/p170255

    Google Scholar 

  102. Wilcox L, Tsirlin I, Allison RS (2010) Sensitivity to monocular occlusions in stereoscopic imagery: Implications for S3D content creation, distribution and exhibition. In: Proceedings of SMPTE international conference on stereoscopic 3D for media and entertainment

    Google Scholar 

  103. Birch EE, Gwiazda J, Held R (1982) Stereoacuity development for crossed and uncrossed disparities in human infants. Vis Res 22(5):507–513. doi:10.1016/0042-6989(82)90108-0

    Google Scholar 

  104. Fox R, Aslin RN, Shea SL, Dumais ST (1980) Stereopsis in human infants. Science 207(4428):323–324. doi:10.1126/science.7350666

    Google Scholar 

  105. Fawcette SL, Wang Y, Birch EE (2005) The critical period for susceptibility of human stereopsis. Invest Ophth Vis Sci 46(2):521–525. doi:10.1167/iows.04-0175

    Google Scholar 

  106. Barry SR (2009) Fixing my gaze: a scientist’s journey into seeing in three dimensions. Basic Books, New York

    Google Scholar 

  107. Blake R, Wilson H (2011) Binocular vision. Vis Res 51(7):754–770. doi:10/1016/j.visres.2010.10.009 13

    Google Scholar 

Download references

Acknowledgments

Parts of this chapter were written while the author was on Special Study Leave from the School of Psychology, The University of Queensland Australia. The author thanks Peter Howarth and a second anonymous reviewer for helpful comments on earlier versions of this chapter. Thanks to Nonie Finlayson for editorial help and assistance with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip M. Grove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grove, P.M. (2013). The Psychophysics of Binocular Vision. In: Zhu, C., Zhao, Y., Yu, L., Tanimoto, M. (eds) 3D-TV System with Depth-Image-Based Rendering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9964-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9964-1_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9963-4

  • Online ISBN: 978-1-4419-9964-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics