Skip to main content

Quadratic Optimization Problems

  • Chapter
  • First Online:
Geometric Methods and Applications

Part of the book series: Texts in Applied Mathematics ((TAM,volume 38))

  • 5282 Accesses

Abstract

In this chapter, we consider two classes of quadratic optimization problems that appear frequently in engineering and in computer science (especially in computer vision): 1. Minimizing

$$f(x)=\frac{1}{2}x^\top Az+x^\top b$$

over all \(x \varepsilon \mathbb{R}^n\), or subject to linear or affine constraints. 2. Minimizing

$$f(x)=\frac{1}{2}x^\top Az+x^\top b$$

over the unit sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,first edition, 2004.

    Google Scholar 

  2. P.G. Ciarlet. Introduction to Numerical Matrix Analysis and Optimization. Cambridge University Press, first edition, 1989. French edition: Masson, 1994.

    Google Scholar 

  3. Timoth’ee Cour and Jianbo Shi. Solving Markov random fields with spectral relaxation. In Marita Meila and Xiaotong Shen, editors, Artifical Intelligence and Statistics. Society for Artificial Intelligence and Statistics, 2007.

    Google Scholar 

  4. Olivier Faugeras. Three-Dimensional Computer Vision, A Geometric Viewpoint. MIT Press,first edition, 1996.

    Google Scholar 

  5. James Foley, Andries van Dam, Steven Feiner, and John Hughes. Computer Graphics. Principles and Practice. Addison-Wesley, second edition, 1993.

    Google Scholar 

  6. Walter Gander, Gene H. Golub, and Urs von Matt. A constrained eigenvalue problem. Linear Algebra and Its Applications, 114/115:815–839, 1989.

    Google Scholar 

  7. Gene H. Golub. Some modified eigenvalue problems. SIAM Review, 15(2):318–334, 1973.

    MATH  Google Scholar 

  8. Ramesh Jain, Rangachar Katsuri, and Brian G. Schunck. Machine Vision. McGraw-Hill, first edition, 1995.

    Google Scholar 

  9. Dimitris N. Metaxas. Physics-Based Deformable Models. Kluwer Academic Publishers, first edition, 1997.

    Google Scholar 

  10. Gilbert Strang. Introduction to Applied Mathematics. Wellesley–Cambridge Press, first edition,1986.

    Google Scholar 

  11. Emanuele Trucco and Alessandro Verri. Introductory Techniques for 3D Computer Vision. Prentice-Hall, first edition, 1998.

    Google Scholar 

  12. Stella X. Yu and Jianbo Shi. Grouping with bias. In Thomas G. Dietterich, Sue Becker, and Zoubin Ghahramani, editors, Neural Information Processing Systems, Vancouver, Canada,3–8 Dec. 2001. MIT Press, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Gallier .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Businees Media, LLC

About this chapter

Cite this chapter

Gallier, J. (2011). Quadratic Optimization Problems. In: Geometric Methods and Applications. Texts in Applied Mathematics, vol 38. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9961-0_15

Download citation

Publish with us

Policies and ethics