Sphingosine and Sphingosine 1 Phosphate in the Brain



Sphingosine is an 18-carbon amino alcohol with an unsaturated hydrocarbon chain. It is found in sphingolipids (cerbroside, sulfatide, and ganglioside) as well as phospholipid (sphingomyelin) (Fig. 9.1). Sphingomyelin (SM) is the major membrane sphingolipid and is the precursor for ceramide and sphingosine. Like ceramide, sphingosine not only regulates activities of phospholipases (PLA2, PLC, and PLD), and protein kinases (PKC and PKA), but also ion channels, CB1 receptors, and SF1 nuclear receptors (Fig. 9.2).


Multiple Sclerosis Sphingosine Kinase Oligodendrocyte Progenitor Sphingolipid Metabolism Signal Transduction Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adibhatla R., Dempsy R., and Hatcher J.F. (2008). Integration of cytokine biology and lipid metabolism in stroke. Front Biosci. 13:1250–1270.PubMedCrossRefGoogle Scholar
  2. Agudo-López A., Miguel B.G., Fernández I., and Martínez A.M. (2010). Involvement of mitochondria on neuroprotective effect of sphingosine-1-phosphate in cell death in an in vitro model of brain ischemia. Neurosci Lett. 470:130–133.PubMedCrossRefGoogle Scholar
  3. Alemany R., van Koppen C.J., Danneberg K., Ter Braak M., Meyer zu Heringdorf D. (2007). Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch. Pharmacol. 374:413–428.PubMedCrossRefGoogle Scholar
  4. Alvarez S.E., Milstien S., and Spiegel S. (2007). Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol Metab 18:300–307.PubMedCrossRefGoogle Scholar
  5. Anelli V., Bassi R., Tettamanti G., Viani P., and Riboni L. (2005). Extracellular release of newly synthesized sphingosine-1-phosphate by cerebellar granule cells and astrocytes. J. Neurochem. 92:1204–1215.PubMedCrossRefGoogle Scholar
  6. Baker D.A., Barth J., Chang R., Obeid L.M., and Gikeson G.S. (2010). Genetic sphingosine kinase 1 deficiency significantly decreases synovial inflammation and joint erosions in murine TNF-alpha-induced arthritis. J. Immunol. 185:2570–2579.PubMedCrossRefGoogle Scholar
  7. Bandhuvula P., Tam Y.Y., Oskouian B., Saba J.D. (2005). The immune modulator FTY720 inhibits sphingosine-1-phosphate lyase activity. J. Biol. Chem. 280:33697–33700.PubMedCrossRefGoogle Scholar
  8. Barber S.C., Mellor H., Gampel A., Scolding N.J. (2004). S1P and LPA trigger Schwann cell actin changes and migration. Eur J Neurosci. 19:3142–3150.PubMedCrossRefGoogle Scholar
  9. Berdyshev E.V., Gorshkova I., Skobeleva A., Bittman R., Lu X., Dudek S.M., Mirzapoiazova T., Garcia J.G., and Natrajan V. (2009). FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells. J. Biol. Chem. 284:5467–5477.PubMedCrossRefGoogle Scholar
  10. Blondeau N., Lai Y., Tyndall S., Popolo M., Topalkara K., Pru J.K., Zhang L., Kim H., Liao J.K., Ding K., and Waeber C. (2007). Distribution of sphingosine kinase activity and mRNA in rodent brain. J Neurochem. 103:509–517.PubMedCrossRefGoogle Scholar
  11. Brinkmann V., Cyster J.G., Hla T. (2004). FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function, Am. J. Transplant. 4:1019–1025.PubMedCrossRefGoogle Scholar
  12. Brinkmann V. (2009) FTY720 (fingolimod) in multiple sclerosis: therapeutic effects in the immune and the central nervous system. Br J Pharmacol 158:1173–1182.PubMedCrossRefGoogle Scholar
  13. Bryan L., Kordula T., Spiegel S., and Milstien S. (2008). Regulation and functions of sphingosine kinases in the brain. Biochim. Biophys. Acta. 1781:459–466.PubMedGoogle Scholar
  14. Chang H. C., Tsai L.H., Chuang L.Y., and Hung W.C. (2001). Role of AKT kinase in sphingosine-induced apoptosis in human hepatoma cells. J. Cell. Physiol. 188:188–193.PubMedCrossRefGoogle Scholar
  15. Chun J., Weiner J.A., Fukushima N., Contos J.J., Zhang G., Kimura Y., Dubin A., Ishii I., Hecht J.H., Akita C., and Kaushal D. (2000). Neurobiology of receptor-mediated lysophospholipid signaling. From the first lysophospholipid receptor to roles in nervous system function and development. Ann N Y Acad Sci 905:110–117.PubMedCrossRefGoogle Scholar
  16. Chun J., and Hartung H.P. (2010.) Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol 33:91–101.PubMedCrossRefGoogle Scholar
  17. Coelho R.P., Payne S.G., Bittman R., Spiegel S., and Sato-Bigbee C. (2007). The immunomodulator FTY720 has a direct cytoprotective effect in oligodendrocyte progenitors. J Pharmacol Exp Ther. 323:626–635.PubMedCrossRefGoogle Scholar
  18. Coelho R.P., Saini H.S., and Sato-Bigbee C. (2010). Sphingosine-1-phosphate and oligodendrocytes: from cell development to the treatment of multiple sclerosis. Prostaglandins Other Lipid Mediat. 91:139–144.PubMedCrossRefGoogle Scholar
  19. Cuvillier O., Edsall L., and Spiegel S. (2000). Involvement of sphingosine in mitochondria-dependent Fas-induced apoptosis of type II Jurkat T cells. J. Biol. Chem. 275:15691–1570.PubMedCrossRefGoogle Scholar
  20. Czech B., Pfeilschifter W., Mazaheri-Omrani N., Strobel M.A., Kahles T., Neumann-Haefelin T., Rami A., Huwiler A., and Pfeilschifter J. (2009). The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochem Biophys Res Commun. 389:251–256.PubMedCrossRefGoogle Scholar
  21. Delon C., Manifava M., Wood E., Thompson D., Krugmann S., Pyne S., Ktistakis N.T. (2004). Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. J Biol Chem. 279:44763–44774.PubMedCrossRefGoogle Scholar
  22. Duan H.F., Wu C.T., Lu Y., Wang H., Liu H.J., Zhang Q.W., Jia X.X., Lu Z.Z., and Wang L.S. (2004). Sphingosine kinase activation regulates hepatocyte growth factor induced migration of endothelial cells. Exp Cell Res. 298:593–601.PubMedCrossRefGoogle Scholar
  23. Duan R.D. (2006). Alkaline sphingomyelinase: an old enzyme with novel implications. Biochim Biophys Acta 1761:281–291.PubMedGoogle Scholar
  24. Farooqui A.A. Horrocks L.A., and Farooqui T. (2007). Interactions between neural membrane glycerophospholipid and sphingolipid mediators: a recipe for neural cell survival or suicide. J Neurosci Res. 85:1834–1850.PubMedCrossRefGoogle Scholar
  25. Farooqui A.A., Ong W.Y., Horrocks L.A. (2008). Neurochemical Aspects of Excitotoxicity. Springer, New York.Google Scholar
  26. Farooqui A.A. (2009). Hot Topics in Neural Membrane Lipidology. Springer New York.Google Scholar
  27. Farooqui A.A. (2010). Neurochemical Aspects of Neurotraumatic and Neurodegenerative diseases. Springer, New York.CrossRefGoogle Scholar
  28. Frasch, S. C., Nick J.A., Fadok V.A., Bratton D.L., Worthen G.S., and Henson P.M. (1998). p38 mitogen-activated protein kinase dependent and -independent intracellular signal transduction pathways leading to apoptosis in human neutrophils. J. Biol. Chem. 273:8389–8397.PubMedCrossRefGoogle Scholar
  29. Furukawa A., Kita K., Toyomoto M., Fujii S., Inoue S., Hayashi K., and Ikeda K. (2007). Production of nerve growth factor enhanced in cultured mouse astrocytes by glycerophospholipids, sphingolipids, and their related compounds. Mol Cell Biochem. 305:27–34.PubMedCrossRefGoogle Scholar
  30. Furuya S., Kurono S., and Hirabayashi Y. (1996). Lysosphingomyelin-elicited Ca2+ mobilization from rat brain microsomes. J Lipid Mediat Cell Signal. 14:303–311.PubMedCrossRefGoogle Scholar
  31. Fyrst H. and Saba J.D. (2010). An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat. Chem. Biol. 6:489–497.PubMedCrossRefGoogle Scholar
  32. Georgieva R., Koumanov K., Momchilova A., Tessier C., and Staneva G. (2010). Effect of sphingosine on domain morphology in giant vesicles. J Colloid Interface Sci. 350:502–510.PubMedCrossRefGoogle Scholar
  33. Harada J., Foley M., Moskowitz M.A., and Waeber C. (2004). Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. J Neurochem 88:1026–1039.Google Scholar
  34. Hasegawa Y., Suzuki H., Sozen T., Rolland W., and Zhang J.H. (2010). Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke. 41:368–374.PubMedCrossRefGoogle Scholar
  35. Haughey N.J., Bandaru V.V., Bae M., and Mattson M.P. (2010). Roles for dysfunctional sphingolipid metabolism in Alzheimer’s disease neuropathogenesis. Biochim Biophys Acta. 1801:878–886.PubMedGoogle Scholar
  36. He X., Huang Y., Li B., Gong C.X., and Schuchman E.H. (2010). Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol. Aging 31:398–408.PubMedCrossRefGoogle Scholar
  37. Hobson J.P., Rosenfeldt H.M., Barak L.S., Olivera A., Poulton S., Caron M.G., Milstien S., and Spiegel S. (2001). Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science 291:1800–1803.PubMedCrossRefGoogle Scholar
  38. Jana A and Pahan K. (2010). Sphingolipids in Multiple Sclerosis. Neuromolecular Med. July 7 [Epub ahead of print].Google Scholar
  39. Jaillard C., Harrison S., Stankoff B, Aigrot M.S., Calver A.R., Duddy G., Walsh F.S., Pangalos M.N., Arimura N., Kaibuchi K., Zalc B., and Lubetzki C. (2005). Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. J Neurosci 25:1459–1469.PubMedCrossRefGoogle Scholar
  40. Johnson J.R., Chu A.K., and Sato-Bigbee C. (2000). Possible role of CREB in the stimulation of oligodendrocyte precursor cell proliferation by neurotrophin-3. J Neurochem. 74:1409–1417.PubMedCrossRefGoogle Scholar
  41. Kajimoto T., Okada T., Yu H., Goparaju S.K., Jahangeer S., and Nakamura S. (2007). Involvement of sphingosine-1-phosphate in glutamate secretion in hippocampal neurons. Mol Cell Biol 27:3429–3440.PubMedCrossRefGoogle Scholar
  42. Kihara A., Mitsutake S., Mizutani Y., and Igarashi Y. (2007). Metabolism and biological functions of two phosphorylated sphingolipids, sphingosin 1-phosphate and ceramide 1-phosphate. Prog Lipid Res 46:124–144.CrossRefGoogle Scholar
  43. Kim D.S., Park S.H., Kwon S.B., Park E.S., Huh C.H., Youn S.W., and Park K.C. (2006). Sphingosylphosphorylcholine-induced ERK activation inhibits melanin synthesis in human melanocytes. Pigment Cell Res. 19:146–153.PubMedCrossRefGoogle Scholar
  44. Kimura A., Ohmori T., Ohkawa R., Madoiwa S., Mimuro J., Murakami T., Kobayashi E., Hoshino Y., Yatomi Y., and Sakota Y. (2007). Essential roles of sphingosine 1-phoshate/S1P1 receptor axis in the migration of neural stem cells toward a site of spinal cord injury. Stem Cells 25:115–124.PubMedCrossRefGoogle Scholar
  45. Kimura T., Boehmler A. M., Seitz G., Kuci S., Wiesner T., Brinkmann V., Kanz L., and Mohle R. (2004) The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34+ progenitor cells. Blood 103, 4478–4486.PubMedCrossRefGoogle Scholar
  46. Kobashi H., Yaoi T., Oda R., Okajima S., Fujiwara H., Kubo T., and Fushiki S. (2006). Lysophospholipid receptors are differentially expressed in rat terminal Schwann cells, as revealed by a single cell rt-PCR and in situ hybridization. Acta Histochem Cytochem. 39:55–60.PubMedCrossRefGoogle Scholar
  47. Kobayashi N., Nishi T., Hirata T., Kihara A., Sano T., Igarashi Y., Yamaguchi A. (2006). Sphingosine 1-phosphate is released from the cytosol of rat platelets in a carrier mediated manner. J Lipid Res 47:614–621.PubMedCrossRefGoogle Scholar
  48. Kumar S., Kahn M.A., Dinh L., and de Vellis J. (1998). NT-3-mediated TrkC receptor activation promotes proliferation and cell survival of rodent progenitor oligodendrocyte cells in vitro and in vivo. J Neurosci Res 54:754–65.PubMedCrossRefGoogle Scholar
  49. Kurokawa T., Yumiya Y., Fujisawa H., Shirao S., Kashiwagi S., Sato M., Kishi H., Miwa S., Mogami K., Kato S., Akimura T., Soma M., Ogasawara K., Ogawa A., Kobayashi S., and Suzuki M. (2009). Elevated concentrations of sphingosylphosphorylcholine in cerebrospinal fluid after subarachnoid hemorrhage: a possible role as a spasmogen. J Clin Neurosci. 16:1064–1068.PubMedCrossRefGoogle Scholar
  50. Lee D.H., Jeon B.T., Jeong E.A., Kim J.S., Cho Y.W., Kim H.J., Kang S.S., Cho G.J., Choi W.S., Roh G.S. (2010). Altered expression of sphingosine kinase 1 and sphingosine-1-phosphate receptor 1 in mouse hippocampus after kainic acid treatment. Biochem Biophys Res Commun. 393:476–480.PubMedCrossRefGoogle Scholar
  51. Liu H., Toman R.E., Goparaju S.K., Maceyka M., Nava V.E., Sankala H., Payne S.G., Bektas M., Ishii I., Chun J., Milstien S., and Spiegel S. (2003). Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J. Biol. Chem. 278 :40330–40336.PubMedCrossRefGoogle Scholar
  52. Maceyka M., Sankala H., Hait N. C., Stunff H. L., Liu H., Toman R., Collier C., Zhang, M., Satin L. S.; Merrill A. H., Milstien S,, Jr., Spiegel S. (2005). SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J. Biol. Chem. 280: 37118–37118.PubMedCrossRefGoogle Scholar
  53. MacLennan A.J., Carney P.R., Zhu W.J., Chaves A.H., Garcia J., Grimes J.R., et al. (2001). An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. Eur J Neurosci 14:203–209.PubMedCrossRefGoogle Scholar
  54. Mandala S., Hajdu R., Bergstrom J., Quackenbush E., Xie J., Milligan J., Thornton R.,Shei G., Card D., Keohane C., Rosenbach M., Hale J., Lynch C.L., Rupprecht K., Parsons W., Rosen H. (2002). Alteration of Lymphocyte Trafficking by Sphingosine-1-Phosphate Receptor Agonists. Science 296:346–349.PubMedCrossRefGoogle Scholar
  55. Medana I., Martinic M.A., Wekerle H., and Neumann H. (2001). Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes. Am J Pathol 159:809–815.PubMedCrossRefGoogle Scholar
  56. Meyer zu Heringdorf D., Lass H., Kuchar I., Lipinski M., Alemany R., Rumenapp U., Jakobs K.H. (2001). Stimulation of intracellular sphingosine-1-phosphate production by G-protein-coupled sphingosine-1-phosphate receptors. Eur J Pharmacol. 414:145–154.PubMedCrossRefGoogle Scholar
  57. Milstien S., Gude D., and Spiegel S. (2007). Sphingosine 1-phosphate in neural signalling and function. Acta Paediatr 96:40–43.CrossRefGoogle Scholar
  58. Mizugishi K., Yamashita T., Olivera A., Miller G.F., Spiegel S., and Proia R.L. (2005). Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol. 25:11113–11121.PubMedCrossRefGoogle Scholar
  59. Mullershausen F., Craveiro L.M., Shin Y., Cortes-Cros M., Bassilana F., Osinde M., Wishart W.L., Guerini D., Thallmair M., Schwab M.E., Sivasankaran R., Seuwen K., and Dev K.K. (2007). Phosphorylated FTY720 promotes astrocyte migration through sphingosine-1-phosphate receptors. J. Neurochem. 102:1151–1161.PubMedCrossRefGoogle Scholar
  60. Newman T.A., Wooley S.T., Hughes P.M., Sibson N.R., Anthony D.C., and Perry V.H. (2001). T-cell and macrophage mediated axon damage in the absence of a CNS specific immune response: involvement of metalloproteinases. Brain 124:2203–2214.PubMedCrossRefGoogle Scholar
  61. Nishimura H., Akiyama T., Irei I., Hamazaki S., and Sadahira Y. (2010). Cellular localization of sphingosine-1-phosphate receptor 1 expression in the human central nervous system. J Histochem Cytochem. 58:847–856.PubMedCrossRefGoogle Scholar
  62. Nixon G.F., Mathieson F.A., and Hunter I. (2008). The multi-functional role of sphingosylphosphorylcholine. Prog. Lipid Res. 47:62–75.PubMedCrossRefGoogle Scholar
  63. Norman E., Cutler R.G., Flannery R., Wang Y., and Mattson M.P. (2010). Plasma membrane sphingomyelin hydrolysis increases hippocampal neuron excitability by sphingosine-1-phosphate mediated mechanisms. J Neurochem. 114:430–439.PubMedGoogle Scholar
  64. Ohanian J. and Ohanian V. (2001). Sphingolipids in mammalian cell signalling. Cell Mol. Life Sci. 58:2053–2068.PubMedCrossRefGoogle Scholar
  65. Ohuchi H., Hamada A., Matsuda H., Takagi A., Tanaka M., Aoki J., Arai H., and Noji S. (2008). Expression patterns of the lysophospholipid receptor genes during mouse early development. Dev Dyn 237:3280–3294.PubMedCrossRefGoogle Scholar
  66. Ong W.Y., Farooqui T., Farooqui A.A. (2010). Involvement of cytosolic phospholipase A2, calcium independent phospholipase A2 and plasmalogen selective phospholipase A2 in neurodegenerative and neuropsychiatric conditions. Curr Med Chem. 17:2746–2763.PubMedCrossRefGoogle Scholar
  67. Oo M.L., Thangada S., Wu M.T., Liu C.H., Macdonald T.L., Lynch K.R., Lin C.Y., Hla T. (2007). Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem 282:9082–9089.PubMedCrossRefGoogle Scholar
  68. Payne S.G., Oskeritzian C.A., Griffiths R., Subramanian P., Barbour S.E., Chalfant C.E., Milstien S., and Spiegel S. (2007). The immunosuppressant drug FTY720 inhibits cytosolic phospholipase A2 independently of sphingosine-1-phosphate receptors. Blood. 109:1077–1085.PubMedCrossRefGoogle Scholar
  69. Piccinini M., Scandroglio F., Prioni S., Buccinna B., Loberto N., Aureli M., Chigorno V., Lupino E., DeMarco G., Lomartire A., Rinaudo M.T., Sonnino S., and Prinetti A. (2010). Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders. Mol. Neurobiol. 41:314–340.PubMedCrossRefGoogle Scholar
  70. Pitson S.M., Moretti P.A., Zebol J.R., Lynn H.E., Xia P., Vadas M.A., and Wattenberg B.W. (2003). Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 22:5491–5500.PubMedCrossRefGoogle Scholar
  71. Pitson S.M., Moretti,P.A.B., Zebol,J.R., Xia,P., Gamble,J.R., Vadas,M.A., D’Andrea,R.J. and Wattenberg,B.W. (2000) Expression of a catalytically inactive sphingosine kinase mutant blocks agonist-induced sphingosine kinase activation: a dominant-negative sphingosine kinase. J. Biol. Chem. 275:33945–33950.PubMedCrossRefGoogle Scholar
  72. Rubio N., Rodriguez R., and Arevalo M.A. (2004). In vitro myelination by oligodendrocyte precursor cells transfected with the neurotrophin-3 gene. Glia 47:78–87.PubMedCrossRefGoogle Scholar
  73. Sakakura C., Sweeney E.A., Shirahama T., Hagiwara A.,Yamaguchi T.,Takahashi T., Hakomori S.,and Igarashi Y.(1998). Selectivity of sphingosine-induced apoptosis. Lack of activity of DL-erythyro-dihydrosphingosine. Biochem. Biophys. Res. Commun. 246:827–830.PubMedCrossRefGoogle Scholar
  74. Sanchez T., Estrada-Hernandez T., Paik J. H., Wu M. T., Venkataraman K., Brinkmann V., Claffey K., and Hla T. (2003). Phosphorylation and action of the immunomodulator FTY720 inhibits vascular endothelial cell growth factor-induced vascular permeability. J. Biol. Chem. 278, 47281–47290.PubMedCrossRefGoogle Scholar
  75. Sanchez T., and Hla T. (2004). Structural and functional characteristics of S1P receptors. J Cell Biochem 92:913–922.PubMedCrossRefGoogle Scholar
  76. Sarkar S., Maceyka M., Hait N.C., Paugh S.W., Sankala H., Milstien S., Spiegel S. (2005). Sphingosine kinase 1 is required for migration, proliferation and survival of MCF-7 human breast cancer cells. FEBS Lett 579:5313–5317.PubMedCrossRefGoogle Scholar
  77. Shu X., Wu W., Mosteller R.D., and Broek D. (2002). Sphingosine kinase mediates vascular endothelial growth factor induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol 22:7758–7768.PubMedCrossRefGoogle Scholar
  78. Singh I.N. and Hall E.D. (2008). Multifaceted roles of sphingosine-1-phosphate: how does this bioactive sphingolipid fit with acute neurological injury? J. Neurosci. Res. 86:1419–1433.PubMedCrossRefGoogle Scholar
  79. Siskind L.J., Fluss S., Bui M., and Colombini M. (2005). Sphingosine forms channels in membranes that differ greatly from those formed by ceramide. J. Bioenerg. Biomembr. 37:227–236.PubMedCrossRefGoogle Scholar
  80. Smith T., Groom A., Zhu B., Turski L. (2000). Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6:62–66.Google Scholar
  81. Smith K.J., Kapoor R., and Felts P.A. (2001). Electrically active axons degenerate when exposed to nitric oxide. Ann Neurol 49:470–476.PubMedCrossRefGoogle Scholar
  82. Sorensen S.D., Nicole O., Peavy R.D., Montoya L.M., Lee C.J., Murphy T.J., Traynelis S.F., Hepler J.R. (2003). Common signaling pathways link activation of murine PAR-1, LPA, and S1P receptors to proliferation of astrocytes. Mol. Pharmacol. 64:1199–1209.PubMedCrossRefGoogle Scholar
  83. Spiegel S. and Milstien S. (2000). Sphingosine-1-phosphate: signaling inside and out. FEBS Lett. 476:55–57.PubMedCrossRefGoogle Scholar
  84. Spiegel S., and Kolesnick R. (2002). Sphingosine 1-phosphate as a therapeutic agent. Leukemia. 16:1596–1602.PubMedCrossRefGoogle Scholar
  85. Spiegel S., and Milstien S. (2003). Exogenous and intracellularly generated sphingosine 1-phosphate can regulate cellular processes by divergent pathways. Biochem Soc Trans. 31:1216–1219.PubMedCrossRefGoogle Scholar
  86. Sukocheva O., Wadham C., Holmes A., Albanese N., Verrier E., Feng F., Bernal A., Derian C.K., Ullrich A., Vadas M.A., and Xia P. (2006). Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J Cell Biol 173:301–310.PubMedCrossRefGoogle Scholar
  87. Taha T. A., Kitatani K., El-Alwani M., J. Bielawski J., Hannun Y.A., and Obeid L.M. (2006). Loss of sphingosine kinase-1 activates the intrinsic pathway of programmed cell death: modulation of sphingolipid levels and the induction of apoptosis. FASEB J. 20:482–484.PubMedGoogle Scholar
  88. Takabe K., Paugh S.W., Milstien S., and Spiegel S. (2008). “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Phamacol. Rev. 60:181–195.Google Scholar
  89. Toman R.E., and Spiegel S. (2002). Lysophospholipid receptors in the nervous system. Neurochem Res 27:619–627.PubMedCrossRefGoogle Scholar
  90. Tornquist K., Woodside M., and Grinstein S. (1997). Sphingosylphosphorylcholine activates an amiloride-insensitive Na+–H+-exchange mechanism in GH4C1 cells. Eur J Biochem. 248:394–400.PubMedCrossRefGoogle Scholar
  91. van Koppen C.J., Meyer zu Heringdorf D., Alemany R., Jakobs K.H. (2001). Sphingosine kinase-mediated calcium signaling by muscarinic acetylcholine receptors. Life Sci 2001;68:2535–2540.PubMedCrossRefGoogle Scholar
  92. Waeber C., Blondeau N., and Salomone S. (2004). Vascular sphingosine-1-phosphate S1P1 and S1P3 receptors. Drug News Perspect. 17:365–382.PubMedCrossRefGoogle Scholar
  93. Whetzel A.M., Bolick D.T., and Hedrick C.C. (2009). Sphingosine-1-phosphate inhibits high glucose-mediated ERK1/2 action in endothelium through induction of MAP kinase phosphatase-3. Am J Physiol Cell Physiol. 296:C339–345.PubMedCrossRefGoogle Scholar
  94. Wirrig C., Hunter I., Mathieson F.A., and Nixon G.F. (2010). Sphingosylphosphorylcholine is a proinflammatory mediator in cerebral arteries. J. Cereb. Blood Metab. 2010 June 16, Epub ahead of print.Google Scholar
  95. Wu Y.P., Mizugishi K., Bektas M., Sandhoff R., and Proia R.L. (2008). Sphingosine kinase 1/S1P receptor signaling axis controls glial proliferation in mice with Sandhoff disease. Hum Mol Genet. 17:2257–2264.PubMedCrossRefGoogle Scholar
  96. Yamagata K., Tagami M., Torii Y., Takenaga F., Tsumagari S., Itoh.S, Yamori Y., and Nara Y. (2003). Sphingosine 1-phosphate induces the production of glial cell line-derived neurotrophic factor and cellular proliferation in astrocytes. Glia 41:199–206.PubMedCrossRefGoogle Scholar
  97. Yatomi Y. (2008). Plasma sphingosine 1-phosphate metabolism and analysis. Biochim Biophys Acta. 1780:606–611.PubMedGoogle Scholar
  98. Zhang J., Zhang A., Sun Y., Cao X., and Zhang N. (2009). Treatment with immunosuppressants FTY720 and tacrolimus promotes functional recovery after spinal cord injury in rats. Tohoku J Exp Med. 219:295–302.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiochemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations