Skip to main content

Sphingosine and Sphingosine 1 Phosphate in the Brain

  • Chapter
  • First Online:
Lipid Mediators and Their Metabolism in the Brain
  • 897 Accesses

Abstract

Sphingosine is an 18-carbon amino alcohol with an unsaturated hydrocarbon chain. It is found in sphingolipids (cerbroside, sulfatide, and ganglioside) as well as phospholipid (sphingomyelin) (Fig. 9.1). Sphingomyelin (SM) is the major membrane sphingolipid and is the precursor for ceramide and sphingosine. Like ceramide, sphingosine not only regulates activities of phospholipases (PLA2, PLC, and PLD), and protein kinases (PKC and PKA), but also ion channels, CB1 receptors, and SF1 nuclear receptors (Fig. 9.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adibhatla R., Dempsy R., and Hatcher J.F. (2008). Integration of cytokine biology and lipid metabolism in stroke. Front Biosci. 13:1250–1270.

    Article  PubMed  CAS  Google Scholar 

  • Agudo-López A., Miguel B.G., Fernández I., and Martínez A.M. (2010). Involvement of mitochondria on neuroprotective effect of sphingosine-1-phosphate in cell death in an in vitro model of brain ischemia. Neurosci Lett. 470:130–133.

    Article  PubMed  Google Scholar 

  • Alemany R., van Koppen C.J., Danneberg K., Ter Braak M., Meyer zu Heringdorf D. (2007). Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch. Pharmacol. 374:413–428.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez S.E., Milstien S., and Spiegel S. (2007). Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol Metab 18:300–307.

    Article  PubMed  CAS  Google Scholar 

  • Anelli V., Bassi R., Tettamanti G., Viani P., and Riboni L. (2005). Extracellular release of newly synthesized sphingosine-1-phosphate by cerebellar granule cells and astrocytes. J. Neurochem. 92:1204–1215.

    Article  PubMed  CAS  Google Scholar 

  • Baker D.A., Barth J., Chang R., Obeid L.M., and Gikeson G.S. (2010). Genetic sphingosine kinase 1 deficiency significantly decreases synovial inflammation and joint erosions in murine TNF-alpha-induced arthritis. J. Immunol. 185:2570–2579.

    Article  PubMed  CAS  Google Scholar 

  • Bandhuvula P., Tam Y.Y., Oskouian B., Saba J.D. (2005). The immune modulator FTY720 inhibits sphingosine-1-phosphate lyase activity. J. Biol. Chem. 280:33697–33700.

    Article  PubMed  CAS  Google Scholar 

  • Barber S.C., Mellor H., Gampel A., Scolding N.J. (2004). S1P and LPA trigger Schwann cell actin changes and migration. Eur J Neurosci. 19:3142–3150.

    Article  PubMed  Google Scholar 

  • Berdyshev E.V., Gorshkova I., Skobeleva A., Bittman R., Lu X., Dudek S.M., Mirzapoiazova T., Garcia J.G., and Natrajan V. (2009). FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells. J. Biol. Chem. 284:5467–5477.

    Article  PubMed  CAS  Google Scholar 

  • Blondeau N., Lai Y., Tyndall S., Popolo M., Topalkara K., Pru J.K., Zhang L., Kim H., Liao J.K., Ding K., and Waeber C. (2007). Distribution of sphingosine kinase activity and mRNA in rodent brain. J Neurochem. 103:509–517.

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann V., Cyster J.G., Hla T. (2004). FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function, Am. J. Transplant. 4:1019–1025.

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann V. (2009) FTY720 (fingolimod) in multiple sclerosis: therapeutic effects in the immune and the central nervous system. Br J Pharmacol 158:1173–1182.

    Article  PubMed  CAS  Google Scholar 

  • Bryan L., Kordula T., Spiegel S., and Milstien S. (2008). Regulation and functions of sphingosine kinases in the brain. Biochim. Biophys. Acta. 1781:459–466.

    PubMed  CAS  Google Scholar 

  • Chang H. C., Tsai L.H., Chuang L.Y., and Hung W.C. (2001). Role of AKT kinase in sphingosine-induced apoptosis in human hepatoma cells. J. Cell. Physiol. 188:188–193.

    Article  PubMed  CAS  Google Scholar 

  • Chun J., Weiner J.A., Fukushima N., Contos J.J., Zhang G., Kimura Y., Dubin A., Ishii I., Hecht J.H., Akita C., and Kaushal D. (2000). Neurobiology of receptor-mediated lysophospholipid signaling. From the first lysophospholipid receptor to roles in nervous system function and development. Ann N Y Acad Sci 905:110–117.

    Article  PubMed  CAS  Google Scholar 

  • Chun J., and Hartung H.P. (2010.) Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol 33:91–101.

    Article  PubMed  CAS  Google Scholar 

  • Coelho R.P., Payne S.G., Bittman R., Spiegel S., and Sato-Bigbee C. (2007). The immunomodulator FTY720 has a direct cytoprotective effect in oligodendrocyte progenitors. J Pharmacol Exp Ther. 323:626–635.

    Article  PubMed  CAS  Google Scholar 

  • Coelho R.P., Saini H.S., and Sato-Bigbee C. (2010). Sphingosine-1-phosphate and oligodendrocytes: from cell development to the treatment of multiple sclerosis. Prostaglandins Other Lipid Mediat. 91:139–144.

    Article  PubMed  CAS  Google Scholar 

  • Cuvillier O., Edsall L., and Spiegel S. (2000). Involvement of sphingosine in mitochondria-dependent Fas-induced apoptosis of type II Jurkat T cells. J. Biol. Chem. 275:15691–1570.

    Article  PubMed  CAS  Google Scholar 

  • Czech B., Pfeilschifter W., Mazaheri-Omrani N., Strobel M.A., Kahles T., Neumann-Haefelin T., Rami A., Huwiler A., and Pfeilschifter J. (2009). The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochem Biophys Res Commun. 389:251–256.

    Article  PubMed  CAS  Google Scholar 

  • Delon C., Manifava M., Wood E., Thompson D., Krugmann S., Pyne S., Ktistakis N.T. (2004). Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. J Biol Chem. 279:44763–44774.

    Article  PubMed  CAS  Google Scholar 

  • Duan H.F., Wu C.T., Lu Y., Wang H., Liu H.J., Zhang Q.W., Jia X.X., Lu Z.Z., and Wang L.S. (2004). Sphingosine kinase activation regulates hepatocyte growth factor induced migration of endothelial cells. Exp Cell Res. 298:593–601.

    Article  PubMed  CAS  Google Scholar 

  • Duan R.D. (2006). Alkaline sphingomyelinase: an old enzyme with novel implications. Biochim Biophys Acta 1761:281–291.

    PubMed  CAS  Google Scholar 

  • Farooqui A.A. Horrocks L.A., and Farooqui T. (2007). Interactions between neural membrane glycerophospholipid and sphingolipid mediators: a recipe for neural cell survival or suicide. J Neurosci Res. 85:1834–1850.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., Ong W.Y., Horrocks L.A. (2008). Neurochemical Aspects of Excitotoxicity. Springer, New York.

    Google Scholar 

  • Farooqui A.A. (2009). Hot Topics in Neural Membrane Lipidology. Springer New York.

    Google Scholar 

  • Farooqui A.A. (2010). Neurochemical Aspects of Neurotraumatic and Neurodegenerative diseases. Springer, New York.

    Book  Google Scholar 

  • Frasch, S. C., Nick J.A., Fadok V.A., Bratton D.L., Worthen G.S., and Henson P.M. (1998). p38 mitogen-activated protein kinase dependent and -independent intracellular signal transduction pathways leading to apoptosis in human neutrophils. J. Biol. Chem. 273:8389–8397.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa A., Kita K., Toyomoto M., Fujii S., Inoue S., Hayashi K., and Ikeda K. (2007). Production of nerve growth factor enhanced in cultured mouse astrocytes by glycerophospholipids, sphingolipids, and their related compounds. Mol Cell Biochem. 305:27–34.

    Article  PubMed  CAS  Google Scholar 

  • Furuya S., Kurono S., and Hirabayashi Y. (1996). Lysosphingomyelin-elicited Ca2+ mobilization from rat brain microsomes. J Lipid Mediat Cell Signal. 14:303–311.

    Article  PubMed  CAS  Google Scholar 

  • Fyrst H. and Saba J.D. (2010). An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat. Chem. Biol. 6:489–497.

    Article  PubMed  CAS  Google Scholar 

  • Georgieva R., Koumanov K., Momchilova A., Tessier C., and Staneva G. (2010). Effect of sphingosine on domain morphology in giant vesicles. J Colloid Interface Sci. 350:502–510.

    Article  PubMed  CAS  Google Scholar 

  • Harada J., Foley M., Moskowitz M.A., and Waeber C. (2004). Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. J Neurochem 88:1026–1039.

    Google Scholar 

  • Hasegawa Y., Suzuki H., Sozen T., Rolland W., and Zhang J.H. (2010). Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke. 41:368–374.

    Article  PubMed  CAS  Google Scholar 

  • Haughey N.J., Bandaru V.V., Bae M., and Mattson M.P. (2010). Roles for dysfunctional sphingolipid metabolism in Alzheimer’s disease neuropathogenesis. Biochim Biophys Acta. 1801:878–886.

    PubMed  CAS  Google Scholar 

  • He X., Huang Y., Li B., Gong C.X., and Schuchman E.H. (2010). Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol. Aging 31:398–408.

    Article  PubMed  CAS  Google Scholar 

  • Hobson J.P., Rosenfeldt H.M., Barak L.S., Olivera A., Poulton S., Caron M.G., Milstien S., and Spiegel S. (2001). Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science 291:1800–1803.

    Article  PubMed  CAS  Google Scholar 

  • Jana A and Pahan K. (2010). Sphingolipids in Multiple Sclerosis. Neuromolecular Med. July 7 [Epub ahead of print].

    Google Scholar 

  • Jaillard C., Harrison S., Stankoff B, Aigrot M.S., Calver A.R., Duddy G., Walsh F.S., Pangalos M.N., Arimura N., Kaibuchi K., Zalc B., and Lubetzki C. (2005). Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. J Neurosci 25:1459–1469.

    Article  PubMed  CAS  Google Scholar 

  • Johnson J.R., Chu A.K., and Sato-Bigbee C. (2000). Possible role of CREB in the stimulation of oligodendrocyte precursor cell proliferation by neurotrophin-3. J Neurochem. 74:1409–1417.

    Article  PubMed  CAS  Google Scholar 

  • Kajimoto T., Okada T., Yu H., Goparaju S.K., Jahangeer S., and Nakamura S. (2007). Involvement of sphingosine-1-phosphate in glutamate secretion in hippocampal neurons. Mol Cell Biol 27:3429–3440.

    Article  PubMed  CAS  Google Scholar 

  • Kihara A., Mitsutake S., Mizutani Y., and Igarashi Y. (2007). Metabolism and biological functions of two phosphorylated sphingolipids, sphingosin 1-phosphate and ceramide 1-phosphate. Prog Lipid Res 46:124–144.

    Article  Google Scholar 

  • Kim D.S., Park S.H., Kwon S.B., Park E.S., Huh C.H., Youn S.W., and Park K.C. (2006). Sphingosylphosphorylcholine-induced ERK activation inhibits melanin synthesis in human melanocytes. Pigment Cell Res. 19:146–153.

    Article  PubMed  CAS  Google Scholar 

  • Kimura A., Ohmori T., Ohkawa R., Madoiwa S., Mimuro J., Murakami T., Kobayashi E., Hoshino Y., Yatomi Y., and Sakota Y. (2007). Essential roles of sphingosine 1-phoshate/S1P1 receptor axis in the migration of neural stem cells toward a site of spinal cord injury. Stem Cells 25:115–124.

    Article  PubMed  CAS  Google Scholar 

  • Kimura T., Boehmler A. M., Seitz G., Kuci S., Wiesner T., Brinkmann V., Kanz L., and Mohle R. (2004) The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34+ progenitor cells. Blood 103, 4478–4486.

    Article  PubMed  CAS  Google Scholar 

  • Kobashi H., Yaoi T., Oda R., Okajima S., Fujiwara H., Kubo T., and Fushiki S. (2006). Lysophospholipid receptors are differentially expressed in rat terminal Schwann cells, as revealed by a single cell rt-PCR and in situ hybridization. Acta Histochem Cytochem. 39:55–60.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N., Nishi T., Hirata T., Kihara A., Sano T., Igarashi Y., Yamaguchi A. (2006). Sphingosine 1-phosphate is released from the cytosol of rat platelets in a carrier mediated manner. J Lipid Res 47:614–621.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S., Kahn M.A., Dinh L., and de Vellis J. (1998). NT-3-mediated TrkC receptor activation promotes proliferation and cell survival of rodent progenitor oligodendrocyte cells in vitro and in vivo. J Neurosci Res 54:754–65.

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa T., Yumiya Y., Fujisawa H., Shirao S., Kashiwagi S., Sato M., Kishi H., Miwa S., Mogami K., Kato S., Akimura T., Soma M., Ogasawara K., Ogawa A., Kobayashi S., and Suzuki M. (2009). Elevated concentrations of sphingosylphosphorylcholine in cerebrospinal fluid after subarachnoid hemorrhage: a possible role as a spasmogen. J Clin Neurosci. 16:1064–1068.

    Article  PubMed  CAS  Google Scholar 

  • Lee D.H., Jeon B.T., Jeong E.A., Kim J.S., Cho Y.W., Kim H.J., Kang S.S., Cho G.J., Choi W.S., Roh G.S. (2010). Altered expression of sphingosine kinase 1 and sphingosine-1-phosphate receptor 1 in mouse hippocampus after kainic acid treatment. Biochem Biophys Res Commun. 393:476–480.

    Article  PubMed  CAS  Google Scholar 

  • Liu H., Toman R.E., Goparaju S.K., Maceyka M., Nava V.E., Sankala H., Payne S.G., Bektas M., Ishii I., Chun J., Milstien S., and Spiegel S. (2003). Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J. Biol. Chem. 278 :40330–40336.

    Article  PubMed  CAS  Google Scholar 

  • Maceyka M., Sankala H., Hait N. C., Stunff H. L., Liu H., Toman R., Collier C., Zhang, M., Satin L. S.; Merrill A. H., Milstien S,, Jr., Spiegel S. (2005). SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J. Biol. Chem. 280: 37118–37118.

    Article  PubMed  CAS  Google Scholar 

  • MacLennan A.J., Carney P.R., Zhu W.J., Chaves A.H., Garcia J., Grimes J.R., et al. (2001). An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. Eur J Neurosci 14:203–209.

    Article  PubMed  CAS  Google Scholar 

  • Mandala S., Hajdu R., Bergstrom J., Quackenbush E., Xie J., Milligan J., Thornton R.,Shei G., Card D., Keohane C., Rosenbach M., Hale J., Lynch C.L., Rupprecht K., Parsons W., Rosen H. (2002). Alteration of Lymphocyte Trafficking by Sphingosine-1-Phosphate Receptor Agonists. Science 296:346–349.

    Article  PubMed  CAS  Google Scholar 

  • Medana I., Martinic M.A., Wekerle H., and Neumann H. (2001). Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes. Am J Pathol 159:809–815.

    Article  PubMed  CAS  Google Scholar 

  • Meyer zu Heringdorf D., Lass H., Kuchar I., Lipinski M., Alemany R., Rumenapp U., Jakobs K.H. (2001). Stimulation of intracellular sphingosine-1-phosphate production by G-protein-coupled sphingosine-1-phosphate receptors. Eur J Pharmacol. 414:145–154.

    Article  PubMed  CAS  Google Scholar 

  • Milstien S., Gude D., and Spiegel S. (2007). Sphingosine 1-phosphate in neural signalling and function. Acta Paediatr 96:40–43.

    Article  Google Scholar 

  • Mizugishi K., Yamashita T., Olivera A., Miller G.F., Spiegel S., and Proia R.L. (2005). Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol. 25:11113–11121.

    Article  PubMed  CAS  Google Scholar 

  • Mullershausen F., Craveiro L.M., Shin Y., Cortes-Cros M., Bassilana F., Osinde M., Wishart W.L., Guerini D., Thallmair M., Schwab M.E., Sivasankaran R., Seuwen K., and Dev K.K. (2007). Phosphorylated FTY720 promotes astrocyte migration through sphingosine-1-phosphate receptors. J. Neurochem. 102:1151–1161.

    Article  PubMed  CAS  Google Scholar 

  • Newman T.A., Wooley S.T., Hughes P.M., Sibson N.R., Anthony D.C., and Perry V.H. (2001). T-cell and macrophage mediated axon damage in the absence of a CNS specific immune response: involvement of metalloproteinases. Brain 124:2203–2214.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura H., Akiyama T., Irei I., Hamazaki S., and Sadahira Y. (2010). Cellular localization of sphingosine-1-phosphate receptor 1 expression in the human central nervous system. J Histochem Cytochem. 58:847–856.

    Article  PubMed  CAS  Google Scholar 

  • Nixon G.F., Mathieson F.A., and Hunter I. (2008). The multi-functional role of sphingosylphosphorylcholine. Prog. Lipid Res. 47:62–75.

    Article  PubMed  CAS  Google Scholar 

  • Norman E., Cutler R.G., Flannery R., Wang Y., and Mattson M.P. (2010). Plasma membrane sphingomyelin hydrolysis increases hippocampal neuron excitability by sphingosine-1-phosphate mediated mechanisms. J Neurochem. 114:430–439.

    PubMed  CAS  Google Scholar 

  • Ohanian J. and Ohanian V. (2001). Sphingolipids in mammalian cell signalling. Cell Mol. Life Sci. 58:2053–2068.

    Article  PubMed  CAS  Google Scholar 

  • Ohuchi H., Hamada A., Matsuda H., Takagi A., Tanaka M., Aoki J., Arai H., and Noji S. (2008). Expression patterns of the lysophospholipid receptor genes during mouse early development. Dev Dyn 237:3280–3294.

    Article  PubMed  CAS  Google Scholar 

  • Ong W.Y., Farooqui T., Farooqui A.A. (2010). Involvement of cytosolic phospholipase A2, calcium independent phospholipase A2 and plasmalogen selective phospholipase A2 in neurodegenerative and neuropsychiatric conditions. Curr Med Chem. 17:2746–2763.

    Article  PubMed  CAS  Google Scholar 

  • Oo M.L., Thangada S., Wu M.T., Liu C.H., Macdonald T.L., Lynch K.R., Lin C.Y., Hla T. (2007). Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem 282:9082–9089.

    Article  PubMed  CAS  Google Scholar 

  • Payne S.G., Oskeritzian C.A., Griffiths R., Subramanian P., Barbour S.E., Chalfant C.E., Milstien S., and Spiegel S. (2007). The immunosuppressant drug FTY720 inhibits cytosolic phospholipase A2 independently of sphingosine-1-phosphate receptors. Blood. 109:1077–1085.

    Article  PubMed  CAS  Google Scholar 

  • Piccinini M., Scandroglio F., Prioni S., Buccinna B., Loberto N., Aureli M., Chigorno V., Lupino E., DeMarco G., Lomartire A., Rinaudo M.T., Sonnino S., and Prinetti A. (2010). Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders. Mol. Neurobiol. 41:314–340.

    Article  PubMed  CAS  Google Scholar 

  • Pitson S.M., Moretti P.A., Zebol J.R., Lynn H.E., Xia P., Vadas M.A., and Wattenberg B.W. (2003). Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 22:5491–5500.

    Article  PubMed  CAS  Google Scholar 

  • Pitson S.M., Moretti,P.A.B., Zebol,J.R., Xia,P., Gamble,J.R., Vadas,M.A., D’Andrea,R.J. and Wattenberg,B.W. (2000) Expression of a catalytically inactive sphingosine kinase mutant blocks agonist-induced sphingosine kinase activation: a dominant-negative sphingosine kinase. J. Biol. Chem. 275:33945–33950.

    Article  PubMed  CAS  Google Scholar 

  • Rubio N., Rodriguez R., and Arevalo M.A. (2004). In vitro myelination by oligodendrocyte precursor cells transfected with the neurotrophin-3 gene. Glia 47:78–87.

    Article  PubMed  Google Scholar 

  • Sakakura C., Sweeney E.A., Shirahama T., Hagiwara A.,Yamaguchi T.,Takahashi T., Hakomori S.,and Igarashi Y.(1998). Selectivity of sphingosine-induced apoptosis. Lack of activity of DL-erythyro-dihydrosphingosine. Biochem. Biophys. Res. Commun. 246:827–830.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez T., Estrada-Hernandez T., Paik J. H., Wu M. T., Venkataraman K., Brinkmann V., Claffey K., and Hla T. (2003). Phosphorylation and action of the immunomodulator FTY720 inhibits vascular endothelial cell growth factor-induced vascular permeability. J. Biol. Chem. 278, 47281–47290.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez T., and Hla T. (2004). Structural and functional characteristics of S1P receptors. J Cell Biochem 92:913–922.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S., Maceyka M., Hait N.C., Paugh S.W., Sankala H., Milstien S., Spiegel S. (2005). Sphingosine kinase 1 is required for migration, proliferation and survival of MCF-7 human breast cancer cells. FEBS Lett 579:5313–5317.

    Article  PubMed  CAS  Google Scholar 

  • Shu X., Wu W., Mosteller R.D., and Broek D. (2002). Sphingosine kinase mediates vascular endothelial growth factor induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol 22:7758–7768.

    Article  PubMed  CAS  Google Scholar 

  • Singh I.N. and Hall E.D. (2008). Multifaceted roles of sphingosine-1-phosphate: how does this bioactive sphingolipid fit with acute neurological injury? J. Neurosci. Res. 86:1419–1433.

    Article  PubMed  CAS  Google Scholar 

  • Siskind L.J., Fluss S., Bui M., and Colombini M. (2005). Sphingosine forms channels in membranes that differ greatly from those formed by ceramide. J. Bioenerg. Biomembr. 37:227–236.

    Article  PubMed  CAS  Google Scholar 

  • Smith T., Groom A., Zhu B., Turski L. (2000). Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6:62–66.

    Google Scholar 

  • Smith K.J., Kapoor R., and Felts P.A. (2001). Electrically active axons degenerate when exposed to nitric oxide. Ann Neurol 49:470–476.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen S.D., Nicole O., Peavy R.D., Montoya L.M., Lee C.J., Murphy T.J., Traynelis S.F., Hepler J.R. (2003). Common signaling pathways link activation of murine PAR-1, LPA, and S1P receptors to proliferation of astrocytes. Mol. Pharmacol. 64:1199–1209.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel S. and Milstien S. (2000). Sphingosine-1-phosphate: signaling inside and out. FEBS Lett. 476:55–57.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel S., and Kolesnick R. (2002). Sphingosine 1-phosphate as a therapeutic agent. Leukemia. 16:1596–1602.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel S., and Milstien S. (2003). Exogenous and intracellularly generated sphingosine 1-phosphate can regulate cellular processes by divergent pathways. Biochem Soc Trans. 31:1216–1219.

    Article  PubMed  CAS  Google Scholar 

  • Sukocheva O., Wadham C., Holmes A., Albanese N., Verrier E., Feng F., Bernal A., Derian C.K., Ullrich A., Vadas M.A., and Xia P. (2006). Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J Cell Biol 173:301–310.

    Article  PubMed  CAS  Google Scholar 

  • Taha T. A., Kitatani K., El-Alwani M., J. Bielawski J., Hannun Y.A., and Obeid L.M. (2006). Loss of sphingosine kinase-1 activates the intrinsic pathway of programmed cell death: modulation of sphingolipid levels and the induction of apoptosis. FASEB J. 20:482–484.

    PubMed  CAS  Google Scholar 

  • Takabe K., Paugh S.W., Milstien S., and Spiegel S. (2008). “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Phamacol. Rev. 60:181–195.

    CAS  Google Scholar 

  • Toman R.E., and Spiegel S. (2002). Lysophospholipid receptors in the nervous system. Neurochem Res 27:619–627.

    Article  PubMed  CAS  Google Scholar 

  • Tornquist K., Woodside M., and Grinstein S. (1997). Sphingosylphosphorylcholine activates an amiloride-insensitive Na+–H+-exchange mechanism in GH4C1 cells. Eur J Biochem. 248:394–400.

    Article  PubMed  CAS  Google Scholar 

  • van Koppen C.J., Meyer zu Heringdorf D., Alemany R., Jakobs K.H. (2001). Sphingosine kinase-mediated calcium signaling by muscarinic acetylcholine receptors. Life Sci 2001;68:2535–2540.

    Article  PubMed  Google Scholar 

  • Waeber C., Blondeau N., and Salomone S. (2004). Vascular sphingosine-1-phosphate S1P1 and S1P3 receptors. Drug News Perspect. 17:365–382.

    Article  PubMed  CAS  Google Scholar 

  • Whetzel A.M., Bolick D.T., and Hedrick C.C. (2009). Sphingosine-1-phosphate inhibits high glucose-mediated ERK1/2 action in endothelium through induction of MAP kinase phosphatase-3. Am J Physiol Cell Physiol. 296:C339–345.

    Article  PubMed  CAS  Google Scholar 

  • Wirrig C., Hunter I., Mathieson F.A., and Nixon G.F. (2010). Sphingosylphosphorylcholine is a proinflammatory mediator in cerebral arteries. J. Cereb. Blood Metab. 2010 June 16, Epub ahead of print.

    Google Scholar 

  • Wu Y.P., Mizugishi K., Bektas M., Sandhoff R., and Proia R.L. (2008). Sphingosine kinase 1/S1P receptor signaling axis controls glial proliferation in mice with Sandhoff disease. Hum Mol Genet. 17:2257–2264.

    Article  PubMed  CAS  Google Scholar 

  • Yamagata K., Tagami M., Torii Y., Takenaga F., Tsumagari S., Itoh.S, Yamori Y., and Nara Y. (2003). Sphingosine 1-phosphate induces the production of glial cell line-derived neurotrophic factor and cellular proliferation in astrocytes. Glia 41:199–206.

    Article  PubMed  Google Scholar 

  • Yatomi Y. (2008). Plasma sphingosine 1-phosphate metabolism and analysis. Biochim Biophys Acta. 1780:606–611.

    PubMed  CAS  Google Scholar 

  • Zhang J., Zhang A., Sun Y., Cao X., and Zhang N. (2009). Treatment with immunosuppressants FTY720 and tacrolimus promotes functional recovery after spinal cord injury in rats. Tohoku J Exp Med. 219:295–302.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A. (2011). Sphingosine and Sphingosine 1 Phosphate in the Brain. In: Lipid Mediators and Their Metabolism in the Brain. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9940-5_9

Download citation

Publish with us

Policies and ethics