Skip to main content

Cholesterol and Hydroxycholesterol in the Brain

  • Chapter
  • First Online:
  • 948 Accesses

Abstract

The brain has higher concentration of cholesterol compared to other body parts (25% of the body’s free cholesterol) (Dietschy and Turley, 2004). In brain, cholesterol resides in two pools: one major pool associated with the myelin sheaths playing an important role in propagation of the electrical signals along the axons and the other minor pool associated with the plasma membranes of astrocytes and neurons (Dietschy and Turley, 2004).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abildayeva P., Jansen P.J., Hirsch-Reinshagen V., Bloks V.W., Bakker A.H., Ramaekers F.C., Devente J., Groen A.K., Wellington C.L., Kuipers F., Mulder M. (2006). 24 S-hydroxycholesterol participates in LXR-controlled pathway in astrocytes that regulate ApoE-mediated cholesterol efflux. J. Biol. Chem. 281:12799–12808.

    Article  PubMed  CAS  Google Scholar 

  • Arca M., Natoli S., Micheletta F., Riggi S, Di Angelantonio E, Montali A, Antonini TM, Antonini R, Diczfalusy U, Iuliano L. (2007). Increased plasma levels of oxysterols, in vivo markers of oxidative stress, in patients with familial combined hyperlipidemia: reduction during atorvastatin and fenofibrate therapy. Free Rad. Biol. Med. 42:698–705.

    Article  PubMed  CAS  Google Scholar 

  • Andersson M., Elmberger P.G., Edlund C., Kristensson K., and Dallner G.(1990). Rates of cholesterol, ubiquinone, dolichol and dolichyl-P biosynthesis in rat brain slices. FEBS Lett. 269:15–18.

    Article  PubMed  CAS  Google Scholar 

  • Bar-On P., Rockenstein E., Adame A., Ho G., Hashimoto M., and Masliah E. (2006). Effects of the cholesterol-lowering compound methyl-beta-cyclodextrin in models of alpha-synucleinopathy. J. Neurochem. 98:1032–1045.

    Article  PubMed  CAS  Google Scholar 

  • Bar-On P., Crews L., Koob A.O., Mizuno H., Adame A., Spencer B., and Masliah E. (2008). Statins reduce neuronal alpha-synuclein aggregation in in vitro models of Parkinson’s disease. J. Neurochem. 105, 1656–1667.

    Article  PubMed  CAS  Google Scholar 

  • Björkhem I., Andersson O., Diczfalusy U., Sevastik B., Duan C., Xiu R., and Lund E. (1994). Atherosclerosis and sterol 27-hydroxylase: evidence for a role of this enzyme in elimination of cholesterol from human macrophages. Proc. Natl. Acad. Sci. U. S. A. 91:8592–8596.

    Article  PubMed  Google Scholar 

  • Björkhem I., Lütjohann D., Diczfalusy U., Stahle L., Ahlborg G., and Wahren J. (1998). Cholesterol homeostasis in human brain: turnover of 24 S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J. Lipid Res. 39:1594–1600.

    PubMed  Google Scholar 

  • Björkhem I., Cedazo-Minguez A., Leoni V., and Meaney S. (2009). Oxysterols and neurodegenerative diseases. Mol. Aspects Med. 30:171–179.

    Article  PubMed  CAS  Google Scholar 

  • Borst P., Zelcer N. and Helvoort A. (2000) ABC transporters in lipid transport. Biochim. Biophys. Acta. 1486, 128–144.

    PubMed  CAS  Google Scholar 

  • Bosco D.A., Fowler D.M., Zhang Q., Nieva J., Powers E.T., Wentworth P. Jr., Lerner R.A., and Kelly J.W. (2006). Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization. Nat. Chem. Biol. 2:249–253.

    Article  PubMed  CAS  Google Scholar 

  • Brown M.S. and Goldstein J.L. (1997). The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340.

    Article  PubMed  CAS  Google Scholar 

  • Cao G., Bales K.R., DeMattos R.B., and Paul S.M. (2007). Liver X receptor-mediated gene regulation and cholesterol homeostasis in brain: relevance to Alzheimer’s disease therapeutics. Curr. Alzheimer Res. 4:179–184.

    Article  PubMed  CAS  Google Scholar 

  • Cartagena C.M., Burns M.P., and Rebeck G.W. (2010). 24S-hydroxycholesterol effects on lipid metabolism genes are modeled in traumatic brain injury. Brain Res. 1319:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C., Ariano M.A., Calvert C.R., Flores-Hernandez J., Chandler S.H., Leavitt B.R., Hayden M.R., and Levine M.S. (2001). NMDA receptor function in mouse models of Huntington disease. J. Neurosci. Res. 66:525–539.

    Article  PubMed  CAS  Google Scholar 

  • Chang J. Y., Chavis J. A., Liu L. Z., and Drew P. D. (1998a). Cholesterol oxides induce programmed cell death in microglial cells. Biochem. Biophys. Res. Commun. 249:817–821.

    Article  PubMed  CAS  Google Scholar 

  • Chang J.Y., Phelan K.D., and Liu L.Z. (1998b). Neurotoxicity of 25-OH-cholesterol on NGF-differentiated PC12 cells. Neurochem Res. 23:7–16.

    Article  PubMed  CAS  Google Scholar 

  • Chang, T.Y., Li, B.L., Chang, C.C., and Urano, Y. (2009). Acyl-coenzyme A:cholesterol acyltransferases. Am J Physiol Endocrinol Metab 297, E1-9.

    Article  PubMed  CAS  Google Scholar 

  • Cheng J.L., Ohsaki Y., Tauchi-Sato K., Fujita A., and Fujimoto T. (2006). Cholesterol depletion induces autophagy. Biochem. Biophys. Res. Commun. 351:246–252.

    Article  PubMed  CAS  Google Scholar 

  • Clark R.S., Bayir H., Chu C.T., Alber S.M., Kochanek P.M., and Watkin S.C. (2008). Autophagy is increased in mice after traumatic brain injury and is detectable in human brain after trauma and critical illness. Autophagy 4:88–90.

    PubMed  CAS  Google Scholar 

  • Craner M.J., Newcombe J., Black J., Hartle C., Waxman S. (2004). Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger, Proc. Natl. Acad. Sci. U.S.A. 101:8168–8173.

    Article  PubMed  CAS  Google Scholar 

  • Dasari B., Prasanthi J.R., Marwarha G., Singh B. B. and Ghribi O. (2010). The oxysterol 27-hydroxycholesterol increases β-amyloid and oxidative stress in retinal pigment epithelial cells. BMC 10:22.

    Article  Google Scholar 

  • DeBose-Boyd R.A. (2008). Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG-CoA reductase. Cell Res. 18:609–621.

    Article  PubMed  CAS  Google Scholar 

  • del Toro D., Xifró X., Pol A., Humbert S., Saudou F., Canals J.M., and Alberch J. (2010). Altered cholesterol homeostasis contributes to enhanced excitotoxicity in Huntington’s disease. J Neurochem. 115:153–1567.

    Article  PubMed  CAS  Google Scholar 

  • DeMattos R. B., Brendza R. P., Heuser J. E., Kierson M., Cirrito J. R., Fryer J., Sullivan P. M., Fagan A. M., Han X., and Holtzman D. M. (2001). Purification and characterization of astrocyte-secreted apolipoprotein E and J-containing lipoproteins from wild-type and human apoE transgenic mice. Neurochem. Int. 39:415–425.

    Article  PubMed  CAS  Google Scholar 

  • Dietschy JM, and Turley SD (2004). Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J. Lipid Res. 45:1375–1397.

    Article  PubMed  CAS  Google Scholar 

  • Escher G., Krozowski Z., Croft K.D., and Sviridov D. (2003). Expression of sterol 27-hydroxylase (CYP27A1) enhances cholesterol efflux. J Biol Chem. 278:11015–11019.

    Article  PubMed  CAS  Google Scholar 

  • Famer D., Meaney S., Mousavi M., Nordberg A., Bjorkhem I and Crisby M. (2007). Regulation of alpha- and beta-secretase activity by oxysterols: cerebrosterol stimulates processing of APP via the α-secretase pathway. Biochem. Biophys. Res. Commun. 20:46–50.

    Article  CAS  Google Scholar 

  • Fantini J., and Yahi N. (2010). Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases. Expert Rev Mol Med. 12:e27.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., Ong W.Y., Lu X.R., Halliwell B., and Horrocks L.A. (2001). Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A2 inhibitors. Brain Res Brain Res Rev. 38:61–78.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., Ong W.Y., and Horrocks L.A. (2004). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res. 29:1961–1977.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., Ong W.Y., Horrocks L.A., Chen P., and Farooqui T. (2007). Comparison of biochemical effects of statins and fish oil in brain: the battle of the titans. Brain Res Rev. 56:443–471.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., Ong W.Y., Horrocks L.A. (2008). Neurochemical Aspects of Excitotoxicity. Springer, New York.

    Google Scholar 

  • Farooqui A.A. (2009).Hot Topics in Neural Membrane Lipidology. Springer, New York.

    Google Scholar 

  • Farooqui A.A. (2010). Neurochemical Aspects of Neurotraumatic and Neurodegenerative Diseases. Springer, New York.

    Book  Google Scholar 

  • Fassbender K., Stroick M., Bertsch T., Ragoschke A., Kuehl S., Walter S., Walter J., Brechtel K., Muehlhauser F., Von Bergmann K., and Lutjohann D. (2002). Effects of statins on human cerebral cholesterol metabolism and secretion of Alzheimer amyloid peptide. Neurology 59:1257–1258.

    PubMed  CAS  Google Scholar 

  • Fernandez A., Llacuna L., Fernandez-Checa J.C., and Colell A (2009). Mitochondrial cholesterol loading exacerbates amyloid beta peptide-induced inflammation and neurotoxicity. J Neurosci 29:6394–6405.

    Article  PubMed  CAS  Google Scholar 

  • Fortin D.L., Troyer M.D., Nakamura K., Kubo S., Anthony M.D., and Edwards R.H. (2004). Lipid rafts mediate the synaptic localization of alpha-synuclein. J. Neurosci. 24:6715–6723.

    Article  PubMed  CAS  Google Scholar 

  • Friedland N., Liou H.L., Lobel P., Stock A.M. (2003). Structure of a cholesterol-binding protein deficient in Niemann–Pick type C2 disease. Proc. Natl. Acad. Sci. U. S. A. 100: 2512–2517.

    Article  PubMed  CAS  Google Scholar 

  • Frikke-Schmidt R., Nordestgaard B.G., Agerholm-Larsen B., Schnohr P., and Tybjaerg-Hansen A. (2000). Context-dependent and invariant associations between lipids, lipoproteins, and apolipoproteins and apolipoprotein E genotype. J Lipid Res 41:1812–1822.

    PubMed  CAS  Google Scholar 

  • Frolov A., Zielinski S.E., Crowley J.R., Dudley-Rucker N., Schaffer J.E., and Ory D.S. (2003). NPC1 and NPC2 regulate cellular cholesterol homeostasis through generation of low density lipoprotein cholesterol-derived oxysterols. J. Biol. Chem. 278:25517–25525.

    Article  PubMed  CAS  Google Scholar 

  • Fu X., Menke J.G., Chen Y., Zhou G., MacNaul K.L., Wright S.D., Sparrow C.P., and Lund E.G. (2001). 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J.Biol.Chem. 276:38378–38387.

    Article  PubMed  CAS  Google Scholar 

  • Gallus G.N., Dotti M.T., and Federico A. (2006). Clinical and molecular diagnosis of cerebrotendinous xanthomatosis with a review of the mutations in the CYP27A1 gene. Neurol. Sci. 27:143–149.

    Article  PubMed  CAS  Google Scholar 

  • Garcia I., Martinou I., Tsujimoto Y., and Martinou J-C. (1992). Prevention of programmed cell death of sympathetic neurons by the bcl-2 proto-oncogene. Science. 258:302–304.

    Article  PubMed  CAS  Google Scholar 

  • Ghribi O., Golovko M.Y., Larsen B., Schrag M., and Murphy E.J. (2006). Deposition of iron and beta-amyloid plaques is associated with cortical cellular damage in rabbits fed with long-term cholesterol-enriched diets. J Neurochem 99:438–449.

    Article  PubMed  CAS  Google Scholar 

  • Ghisletti S., Huang W., Ogawa S., Pascual G., Lin M.E., Willson T.M., Rosenfeld M.G. and Glass C.K. (2007). Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Mol. Cell 25:57–70.

    Article  PubMed  CAS  Google Scholar 

  • Gilardi F., Viviani B., Galmozzi A., Boraso M., Bartesaghi S., Torri A., Caruso D., Crestani M., Marinovich M., and de Fabiani E. (2009). Expression of sterol 27-hydroxylase in glial cells and its regulation by liver X receptor signaling. Neuroscience. 164:530–540.

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg S.D., Hemby S.E., Lee V.M., Eberwine J.H., and Trojanowski J.Q. (2000). Expression profile of transcripts in Alzheimer’s disease tangle-bearing CA1 neurons. Ann. Neurol. 48:77–87.

    Article  PubMed  CAS  Google Scholar 

  • Guarneri P., Cascio C., Piccoli T., Piccoli F., and Guarneri R. (2000). Human neuroblastoma SH-SY5Y cell line: neurosteroid-producing cell line relying on cytoskeletal organization. J Neurosci Res. 60:656–665.

    Article  PubMed  CAS  Google Scholar 

  • Guzowski J.F., Lyford G.L., Stevenson G.D., Houston F.P., McGaugh J.L., Worley P.F., Barnes C.A. (2000). Inhibition of activity-dependent arc protein expression in rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 20:3993–4001.

    PubMed  CAS  Google Scholar 

  • Han J.H., Kim Y.J., Han, E.S., and Lee C.J. (2007). Prevention of 7-ketocholesterol-induced mitochondrial damage and cell death by calmodulin inhibition. Brain Res. 1137: 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Hartung H.P. and Rieckmann P. (1997). Pathogenesis of immune-mediated demyelination in the CNS, J. Neural Transm. Suppl. 50:173–181.

    CAS  Google Scholar 

  • He X., Jenner A.M., Ong W.Y., Farooqui A.A. and Patel S.C. (2006). Lovastatin modulates increased cholesterol and oxysterol levels and has a neuroprotective effect on rat hippocampal neurons after kainate injury. J. Neuropathol. Exp. Neurol. 65:652–663.

    Article  PubMed  CAS  Google Scholar 

  • Hu G., Antikainen R., Jousilahti P., Kivipelto M., Tuomilehto J. (2008). Total cholesterol and the risk of Parkinson disease. Neurology 70:1972–1979.

    Article  PubMed  CAS  Google Scholar 

  • Huang X., Chen H., Miller W.C., Mailman R.B., Woodard J.L., Chen P.C., Xiang D., Murrow R.W., Wang Y.Z., and Poole C. (2007). Lower low-density lipoprotein cholesterol levels are associated with Parkinson’s disease. Mov. Disord. 22:377–381.

    Article  PubMed  Google Scholar 

  • Infante R.E., Radhakrishnan A., Abi-Mosleh L., Kinch L.N., Wang M.L., Grishin N.V., Goldstein J.L., and Brown M.S (2008). Purified NPC1 protein: II. Localization of sterol binding to a 240-amino acid soluble luminal loop. J Biol Chem 283:1064–1075.

    Article  PubMed  CAS  Google Scholar 

  • Johnson C.C., Gorell J.M., Rybicki B.A., Sanders K., Peterson E.L. (1999). Adult nutrient intake as a risk factor for Parkinson’s disease. Int. J. Epidemiol. 28:1102–1109.

    Article  PubMed  CAS  Google Scholar 

  • Joseph S.B., Castrillo A., Laffitte B.A., Mangelsdorf D.J. and Tontonoz P. (2003). Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat. Med. 9:213–219.

    Article  PubMed  CAS  Google Scholar 

  • Jurevics H. and Morell P. (1995). Cholesterol for synthesis of myelin is made locally, not imported into brain. J. Neurochem. 64:895–901.

    Article  PubMed  CAS  Google Scholar 

  • Jurevics H.A., Kidwai F.Z., Morell P. (1997). Sources of cholesterol during development of the rat fetus and fetal organs. J Lipid Res 38:723–733.

    PubMed  CAS  Google Scholar 

  • Kim Y.J., Han J.H., Han E.S., and Lee C.J. (2006). 7-Ketocholesterol enhances 1-methyl-4-phenylpyridinium-induced mitochondrial dysfunction and cell death in PC12 cells. J. Neural. Transm. 113:1877–1885.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.H., and Ong, W.Y (2009). Localization of the transcription factor, sterol regulatory element binding protein-2 (SREBP-2) in the normal rat brain and changes after kainate-induced excitotoxic injury. J Chem Neuroanat 37:71–77.

    Article  PubMed  CAS  Google Scholar 

  • Koldamova R.P., Lefterov I.M., Ikonomovic M.D., Skoko J., Lefterov P.I., Isanski B.A., DeKosky S.T. and Lazo J.S. (2003). 22R-hydroxycholesterol and 9-cis-retinoic acid induce ATP-binding cassette transporter A1 expression and cholesterol efflux in brain cells and decrease amyloid beta secretion. J. Biol. Chem. 278:13244–13256.

    Article  PubMed  CAS  Google Scholar 

  • Kolsch H., Ludwig M., Lutjohann D., Rao M.L. (2001). Neurotoxicity of 24-hydroxycholesterol, an important cholesterol elimination product of the brain, may be prevented by vitamin E and estradiol-17beta. J Neural Transm. 108:475–488.

    Article  PubMed  CAS  Google Scholar 

  • Koob A.O., Ubhi K., Paulsson J.F., Kelly J., Rockenstein E., Mante M., Adame A., Masliah E. (2010). Lovastatin ameliorates alpha-synuclein accumulation and oxidation in transgenic mouse models of alpha-synucleinopathies. Exp Neurol. 221:267–274.

    Article  PubMed  CAS  Google Scholar 

  • Kovacs W.J., Faust P.L., Keller G.A., and Krisans S.K. (2001). Purification of brain peroxisomes and localization of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Eur J Biochem. 268:4850–4859.

    Article  PubMed  CAS  Google Scholar 

  • Leoni V., Masterman T., Diczfalusy U., De Luca G., Hillert J., and Bjorkhem I. (2002). Changes in human plasma levels of the brain specific oxysterol 24S-hydroxycholesterol during progression of multiple sclerosis. Neurosci Lett 331:163.

    Article  PubMed  CAS  Google Scholar 

  • Leoni V, Masterman T, Patel P, Meaney S, Diczfalusy U, Bjorkhem I. (2003). Side chain oxidized oxysterols in cerebrospinal fluid and the integrity of blood–brain and blood–cerebrospinal fluid barriers. J Lipid Res 44:793–799.

    Article  PubMed  CAS  Google Scholar 

  • Leoni V., Mariotti C., Tabrizi S.J., Valenza M. Wild E.J., Henley S.M. Hobbs N.Z., Mandelli M.L., Grisoli M., Björkhem I., Cattaneo E., and Di Donato S. (2008). Plasma 24 S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington’s disease. Brain. 131:2851–2859.

    Article  PubMed  Google Scholar 

  • Leoni V., Solomon A., and Kivipelto M. (2010). Links between ApoE, brain cholesterol metabolism, tau and amyloid beta-peptide in patients with cognitive impairment. Biochem Soc Trans. 38:1021–1025.

    Article  PubMed  CAS  Google Scholar 

  • Levi O., Lütjohann D., Devir A., von Bergmann K., Hartmann T., and Michaelson D.M. (2005). Regulation of hippocampal cholesterol metabolism by apoE and environmental stimulation. J Neurochem 95:987–997.

    Article  PubMed  CAS  Google Scholar 

  • Liou H.L., Dixit S.S., Xu S., Tint G.S., Stock A.M., and Lobel P. (2006). NPC2, the protein deficient in Niemann-Pick C2 disease, consists of multiple glycoforms that bind a variety of sterols. J Biol Chem 281:36710–36723.

    Article  PubMed  CAS  Google Scholar 

  • Lizard G., Miguet C., Bessède G., Monier S., Gueldry S., Neel D., and Gambert P. (2000). Impairment with various antioxidants of the loss of mitochondrial transmembrane potential and of the cytosolic release of cytochrome c occuring during 7-ketocholesterol-induced apoptosis. Free Radic. Biol. Med. 28:743–753.

    Article  PubMed  CAS  Google Scholar 

  • Lund E.G., Guileyardo J.M., and Russel D.W. (1999). cDNA cloning of cholesterol 24-hydroxylase, a mediator of the cholesterol homeostasis in the brain. Proc Natl Acad Sci USA 96:7238–7243.

    Article  PubMed  CAS  Google Scholar 

  • Lütjohann D., Breuer O., Ahlborg G., Nennesmo I., Siden Å., Diczfalusy U., and Bjorkhem I. (1996). Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci USA 93:9799–9804.

    Article  PubMed  Google Scholar 

  • Lütjohann D., Brzezinka A., Barth E., Abramowski D., Staufenbiel M., Bergmann K., Beyreuther K., Multhaup G. and Bayer T.A. (2002). Profile of cholesterol-related sterols in aged amyloid precursor protein transgenic mouse brain. J. Lipid Res. 43:1078–1085.

    Article  PubMed  CAS  Google Scholar 

  • Lutjohann D. and von Bergmann K. (2003). 24S-hydroxycholesterol: a marker of brain cholesterol metabolism. Pharmacopsychiatry 36 Suppl. 2:S102-S106.

    PubMed  Google Scholar 

  • Ma M.T., Zhang J., Farooqui A.A., Chen P., and Ong W.Y. (2010). Effects of cholesterol oxidation products on exocytosis. Neurosci Lett. 476:36–41.

    Article  PubMed  CAS  Google Scholar 

  • Marwarha G., Dasari B., Prasanthi J.R., Schommer J., and Ghribi O. (2010). Leptin reduces the accumulation of Abeta and phosphorylated tau induced by 27-hydroxycholesterol in rabbit organotypic slices. J Alzheimers Dis. 19:1007–1019.

    PubMed  CAS  Google Scholar 

  • Masumoto O., Ohyama Y., and Okuda K. (1988). Purification and characterization of vitamin D 25-hydroxylase from rat liver mitochondria. J Biol Chem 263:14256–14260.

    PubMed  CAS  Google Scholar 

  • Mateos L., Akterin S., Gil-Bea F.J., Spulber S., Rahman A., Björkhem I., Schultzberg M., Flores-Morales A., and Cedazo-Minguez A. (2009). Activity-regulated cytoskeleton-associated protein in rodent brain is down-regulated by high fat diet in vivo and by 27-hydroxycholesterol in vitro. Brain Pathol. 19, 69–80.

    Article  PubMed  CAS  Google Scholar 

  • Mauch D. H., Nägler K., Schumacher S., Göritz C., Müller E. C., Otto A., and Pfrieger F. W. (2001). CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–1357.

    Article  PubMed  CAS  Google Scholar 

  • Mellon S.H. (2007). Neurosteroid regulation of central nervous system development. Pharmacol Ther. 116:107–124.

    Article  PubMed  CAS  Google Scholar 

  • Melov S., Adlard P.A., Morten K., Johnson F., Golden T.R., Hinerfeld D., Schilling B., Mavros C., Masters C.L., Volitakis I., Li Q.X., Laughton K., Hubbard A., Cherny R.A., Gibson B., and Bush A.I. (2007). Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS ONE. 2:e536.

    Article  PubMed  CAS  Google Scholar 

  • Michikawa M. (2004). Neurodegenerative disorders and cholesterol. Curr. Alzheimer Res. 1, 271–275.

    Article  PubMed  CAS  Google Scholar 

  • Millanvoye-Van Brussel E., Topal G., Brunet A., Do Phaw T., Deckert V., Rendu F., and David-Dufilho M. (2004). Lysophosphatidylcholine and 7-oxocholesterol modulate Ca2+ signals and inhibit the phosphorylation of endothelial NO synthase and cytosolic phospholipase A2. Biochem. J. 380:533–539.

    Article  Google Scholar 

  • Mukherjee S., and Maxfield F.R. (2004). Lipid and cholesterol trafficking in NPC. Biochim Biophys Acta. 1685:28–37.

    PubMed  CAS  Google Scholar 

  • Nelson T. J., and Alkon D. L. (2005). Oxidation of cholesterol by amyloid precursor protein and β-amyloid peptide. J. Biol. Chem. 280:7377–7387.

    Article  PubMed  CAS  Google Scholar 

  • Nieweg K., Schaller H., and Pfrieger F.W. (2009). Marked differences in cholesterol synthesis between neurons and glial cells from postnatal rats. J Neurochem 109:125–134.

    Article  PubMed  CAS  Google Scholar 

  • Norlin M., von Bahr S., Bjorkhem I., and Wikvall K. (2003). On the substrate specificity of human CYP27A1: implications for bile acid and cholestanol formation. J.Lipid Res. 44:1515–1522.

    Article  PubMed  CAS  Google Scholar 

  • Ong W. Y., Goh E. W. S., Lu X. R., Farooqui A. A., Patel S. C., and Halliwell B. (2003). Increase in cholesterol and cholesterol oxidation products, and role of cholesterol oxidation products in kainate-induced neuronal injury. Brain Pathol. 13:250–262.

    Article  PubMed  CAS  Google Scholar 

  • Ong W.Y., Sundaram R.K., Huang E., Ghoshal S., Kumar U., Pentchev P.G., and Patel S.C. (2004). Neuronal localization and association of Niemann Pick C2 protein (HE1/NPC2) with the postsynaptic density. Neuroscience. 128:561–70.

    Article  PubMed  CAS  Google Scholar 

  • Ong W.Y., Kim J.H., He X., Chen P., Farooqui A.A., and Jenner A.M. (2010). Changes in brain cholesterol metabolome after excitotoxicity. Mol Neurobiol. 41:299–313.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim R W. (1991). Cell death during development of the nervous system. Annu Rev Neurosci. 14:453–501.

    Article  PubMed  CAS  Google Scholar 

  • Park D.S., Obeidat A., Giovanni A., and Greene L.A. (2000). Cell cycle regulators in neuronal death evoked by excitotoxic stress: implications for neurodegeneration and its treatment. Neurobiol Aging. 21:771–781.

    Article  PubMed  CAS  Google Scholar 

  • Patel S.C., Suresh S., Kumar U., Hu C.Y., Cooney A., Blanchette-Mackie E.J., Neufeld E.B., Patel R.C., Brady R.O., Patel Y.C., Pentchev P.G., and Ong W.Y. (1999). Localization of Niemann-Pick C1 protein in astrocytes: implications for neuronal degeneration in Niemann- Pick type C disease. Proc Natl Acad Sci U S A. 96:1657–1662.

    Article  PubMed  CAS  Google Scholar 

  • Pfrieger F.W. (2003). Outsourcing in the brain: do neurons depend on cholesterol delivery by astrocytes? Bioessays 25:72–78.

    Article  PubMed  CAS  Google Scholar 

  • Pikuleva I.A. (2006). Cytochrome P450s and cholesterol homeostasis. Pharmacol Ther. 112:761–773.

    Article  PubMed  CAS  Google Scholar 

  • Prasanthi J.R., Huls A., Thomasson S., Thompson A., Schommer E., and Ghribi O. (2009). Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on betaamyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells. Mol. Neurodegener. 4, 1.

    Article  PubMed  CAS  Google Scholar 

  • Raghupathi R. (2004). Cell death mechanisms following traumatic brain injury. Brain Pathol. :215–222.

    Google Scholar 

  • Ramirez D.M., Anderson S., and Russell D.W. (2008). Neuronal expression and subcellular localization of cholesterol 24-hydroxylase in the mouse brain. J. Comp. Neurol. 507:1676–1693.

    Article  PubMed  CAS  Google Scholar 

  • Rantham Prabhakara J.P., Feist G., Thomasson S., Thompson A., Schommer E., and Ghribi O. (2008). Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on tyrosine hydroxylase and alpha-synuclein in human neuroblastoma SH-SY5Y cells. J Neurochem. 107:1722–1729.

    Article  PubMed  CAS  Google Scholar 

  • Repa J.J., Li H., Frank-Cannon T.C., Valasek M.A., Turley S.D., Tansey M.G., and Dietschy J.M. (2007). Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse. J Neurosci. 27:14470–144780.

    Article  PubMed  CAS  Google Scholar 

  • Rojo L., Sjöberg M. K., Hernández P., Zambrano C., and Maccioni R. B. (2006). Roles of cholesterol and lipids in the etiopathogenesis of Alzheimer’s disease. J. Biomed. Biotechnol. 2006:73976.

    Article  PubMed  CAS  Google Scholar 

  • Rudel, L.L., Lee, R.G., and Cockman, T.L. (2001). Acyl coenzyme A: cholesterol acyltransferase types 1 and 2: structure and function in atherosclerosis. Curr Opin Lipidol 12:121–127.

    Article  PubMed  CAS  Google Scholar 

  • Russell D.W. (2000) Oxysterol biosynthetic enzymes. Biochim. Biophys. Acta. 1529, 126–135.

    PubMed  CAS  Google Scholar 

  • Russell D.W. (2003). The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 72:137–174.

    Article  PubMed  CAS  Google Scholar 

  • Sacchetti P., Sousa K.M., Hall A.C., Liste I., Steffensen K.R., Theofilopoulos S., Parish C.L., Hazenberg C., Richter L.A., Hovatta O., Gustafsson J.A., and Arenas E. (2009). Liver X receptors and oxysterols promote ventral midbrain neurogenesis in vivo and in human embryonic stem cells. Cell Stem Cell. 5:409–419.

    Article  PubMed  CAS  Google Scholar 

  • Saito M., Benson E.P., and Rosenberg A. (1987). Metabolism of cholesterol and triacylglycerol in cultured chick neuronal cells, glial cells, and fibroblasts: accumulation of esterified cholesterol in serum-free culture. J Neurosci Res 18:319–325.

    Article  PubMed  CAS  Google Scholar 

  • Schippling S., Kontush A., Arlt S., Buhmann C., Stürenburg H.J., Mann U., Müller-Thomsen T. and Beisiegel U. (2000). Increased lipoprotein oxidation in Alzheimer’s disease. Free Radic. Biol. Med. 28, 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A., Vogel R., Holloway M.K., Rutledge S.J., Friedman O., Yang Z., Rodan G.A., and Friedman E. (1999). Transcription control and neuronal differentiation by agents that activate the LXR nuclear receptor family. Mol Cell Endocrinol. 155:51–60.

    Article  PubMed  CAS  Google Scholar 

  • Schroepfer G.J. (2000). Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev 80:361–554.

    PubMed  CAS  Google Scholar 

  • Simons M., Keller P., De Strooper B., Beyreuther K., Dotti C.G., and Simons K. (1998). Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 95:6460–6464.

    Article  PubMed  CAS  Google Scholar 

  • Simons K. and Ikonen E. (2000). How cells handle cholesterol. Science 290:1721–1726.

    Article  PubMed  CAS  Google Scholar 

  • Smith L. L. (1981). Enzymatic and non-enzymatic oxidation of cholesterol in Cholesterol Autoxidation, Plenum Press, New York.

    Google Scholar 

  • Song C. and Liao S. (2000). Cholestenoic acid is a naturally occurring ligand for liver X receptor alpha. Endocrinology 141:4180–4184.

    Article  PubMed  CAS  Google Scholar 

  • Sparks D.L., Scheff S.W., Hunsaker 3rd J.C., Liu H., Landers T., Gross D.R. (1994). Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol 126:88–94.

    Article  PubMed  CAS  Google Scholar 

  • Sue O’Shea K. (2002). Neural differentiation of embryonic stem cells in Methods in Molecular Biology 198:3–13, Springer, New York.

    Google Scholar 

  • Suzuki S., Kiyosue K., Hazama S., Ogura A., Kashihara M., Hara T., Koshimizu H., and Kojima M. (2007) Brain-derived neurotrophic factor regulates cholesterol metabolism for synapse development. J Neurosci 27:6417–6427.

    Article  PubMed  CAS  Google Scholar 

  • Teunissen C.E., Dijkstra C.D., Polman C.H., Hoogervorst E.L., von Bergmann K., and Lutjohann D. (2003). Decreased levels of the brain specific 24S-hydroxycholesterol and cholesterol precursors in serum of multiple sclerosis patients. Neurosci Lett 347:159–162.

    Article  PubMed  CAS  Google Scholar 

  • Teunissen C.E., Floris S., Sonke M., Dijkstra C.D., De Vries H.E., Lütjohann D. (2007). 24S-hydroxycholesterol in relation to disease manifestations of acute experimental autoimmune encephalomyelitis. J. Neurosci. Res. 85:1499–505.

    Article  PubMed  CAS  Google Scholar 

  • Thelen K.M., Falkai P., Bayer T.A. and Lütjohann D. (2006). Cholesterol synthesis rate in human hippocampus declines with aging. Neurosci. Lett. 403:15–19.

    Article  PubMed  CAS  Google Scholar 

  • Thinakaran G. and Koo E.H. (2008). Amyloid precursor protein trafficking, processing, and function. J Biol Chem. 283:29615–29619.

    Article  PubMed  CAS  Google Scholar 

  • Trapp B.D., Peterson J., Ransohoff R.M., Rudick R., Mork S., and Bo L. (1998). Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338:278–285.

    Article  PubMed  CAS  Google Scholar 

  • Trousson A., Bernard S., Petit P.X., Liere P., Pianos A., El Hadri K., Lobaccaro J.M., Ghandour M.S., Raymondjean M., Schmacher M., and Massaad (2009). 25-hydroxycholesterol provokes oligodendrocyte cell line apoptosis and stimulates the secreted phospholipase A2 type IIA via LXR beta and PXR. J. Neurochem. 109:945–958.

    Article  PubMed  CAS  Google Scholar 

  • Usui E., Noshiro M., Ohyama Y., and Okuda K. (1990). Unique property of liver mitochondrial P450 to catalyze the two physiologically important reactions involved in both cholesterol catabolism and vitamin D activation. FEBS Lett. 274:175–177.

    Article  PubMed  CAS  Google Scholar 

  • Valenza M., Leoni V., Karasinska J.M., Petricca L., Fan J., Carroll J., Pouladi M.A., Fossale E., Nguyen H.P., Riess O., MacDonald M., Wellington C., DiDonato S., Hayden M., and Cattaneo E. (2010). Cholesterol defect is marked across multiple rodent models of Huntington’s disease and is manifest in astrocytes. J Neurosci. 30:10844–10850.

    Article  PubMed  CAS  Google Scholar 

  • Vance J. E., Hayashi H., and Karten B. (2005). Cholesterol homeostasis in neurons and glial cells. Semin. Cell Dev. Biol. 16:193–212.

    Article  PubMed  CAS  Google Scholar 

  • Vaya J. and Schipper H.M. (2007) Oxysterols, cholesterol homeostasis, and Alzheimer disease. J. Neurochem. 102, 1727–1737.

    Article  PubMed  CAS  Google Scholar 

  • Velázquez E., Santos A., Montes A., Blázquez E., and Ruiz-Albusac J. M. (2006). 25-Hydroxycholesterol has a dual effect on the proliferation of cultured rat astrocytes. Neuropharmacology 51:229–237.

    Article  PubMed  CAS  Google Scholar 

  • Venkateswaran A., Laffitte B.A., Joseph S.B., Mak P.A., Wilpitz D.C., Edwards P.A. and Tontonoz P. (2000). Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXRalpha. Proc. Natl. Acad. Sci. U S A 97:12097–12102.

    Article  PubMed  CAS  Google Scholar 

  • Wiegand V., Chang T.Y., Strauss 3 rd J.F., Fahrenholz F., and Gimpl G. (2003). Transport of plasma membrane-derived cholesterol and the function of Niemann–Pick C1 protein. FASEB J. 17:782–784.

    PubMed  CAS  Google Scholar 

  • Wolozin B., Kellman W., Ruosseau P., Celesia G.G., and Siegel G. (2000). Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3- methylglutaryl coenzyme A reductase inhibitors. Arch Neurol 57:1439–1443.

    Article  PubMed  CAS  Google Scholar 

  • Wolozin B. (2004). Cholesterol and the biology of Alzheimer’s disease. Neuron 41:7–10.

    Article  PubMed  CAS  Google Scholar 

  • Wolozin B., Wang S.W., Li N.C., Lee A., Lee T.A., and Kazis L.E. (2007). Simvastatin is associated with a reduced incidence of dementia and Parkinson’s disease. BMC Med. 5:20.

    Article  PubMed  CAS  Google Scholar 

  • Yao Z.X., Brown R.C., Teper G., Greeson J., and Papadopoulos V. (2002). 22R-Hydroxycholesterol protects neuronal cells from beta-amyloid-induced cytotoxicity by binding to beta-amyloid peptide. J. Neurochem. 83:1110–1119.

    Article  PubMed  CAS  Google Scholar 

  • Yao Z.X., Han Z., Xu J., Greeson J., Lecanu L., and Papadopoulos V. (2007). 22R-Hydroxycholesterol induces differentiation of human NT2 precursor (Ntera2/D1 teratocarcinoma) cells. Neuroscience. 148:441–453.

    Article  PubMed  CAS  Google Scholar 

  • Zelcer N. and Tontonoz P. (2006). Liver X receptors as integrators of metabolic and inflammatory signaling. J. Clin. Invest. 116:607–614.

    Article  PubMed  CAS  Google Scholar 

  • Zerbinatti C.V., Cordy J.M., Chen C.D., Guillily M., Suon S., Ray W.J., Seabrook G.R., Abraham C.R., and Wolozin B. (2008). Oxysterol-binding protein-1 (OSBP1) modulates processing and trafficking of the amyloid precursor protein. Mol Neurodegener. 2008:3:5.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Yu, C., Liu, J., Spencer, T.A., Chang, C.C., and Chang, T.Y. (2003). Cholesterol is superior to 7-ketocholesterol or 7 alpha-hydroxycholesterol as an allosteric activator for acyl-coenzyme A:cholesterol acyltransferase 1. J Biol Chem 278:11642–11647.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A. (2011). Cholesterol and Hydroxycholesterol in the Brain. In: Lipid Mediators and Their Metabolism in the Brain. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9940-5_10

Download citation

Publish with us

Policies and ethics