In Search of a Truly Two-Dimensional Metallic Oxide

  • Priya Mahadevan
  • Kapil Gupta
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 149)


The existence of a metallic state and metal–insulator transition in two-dimensional (2D) systems has been an area that has attracted considerable attention, especially in view of theoretical considerations developed in the late 1970s and early 1980s which asserted on firm grounds that one could not have a metallic state in two dimensions. Since the slightest amount of disorder usually drives the system to an Anderson insulator, the origin of the metallic state discovered in the 1990s is still a puzzle. This chapter discusses results of density functional theory and DFT + U calculations for the electronic and magnetic ground state favored by 2D films of a 4d oxide which is both ferromagnetic and metallic in the bulk. Although the 4d oxides are usually not associated with strong correlation effects, interesting effects arise in the ultrathin limit. In particular, SrRuO3 is found to become an antiferromagnetic insulator, which evolves into a ferromagnetic metal with thickness. The thickness dependent insulator–metal transition takes place at four monolayers. The ultrathin limit represents the rare realization of a high spin state for Ru. The strong changes in the properties at this limit occur because the system becomes strongly localized and consequently strongly Jahn–Teller active. As a result, even a seemingly uncorrelated 4d oxide does not favor a metallic ground state.


Generalise Gradient Approximation High Spin State Metallic State Magnetic Ground State Fermi Liquid Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



PM thanks the Department of Science and Technology for financial support and acknowledges an earlier collaboration with A. Janotti, F. Aryasetiawan, and T. Sasaki on a part of the work.


  1. 1.
    Kravchenko, S.V., Kravchenko, G.V., Furneaux, J.E., Pudalov, V.M., D’Iorio, M.: Possible metal-insulator transition at B=0 in two dimensions. Phys. Rev. B 50, 8039 (1994)CrossRefGoogle Scholar
  2. 2.
    Abrahams, E., Anderson, P.W., Licciardello, D.C., Ramakrishnan, T.V.: Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673 (1979)CrossRefGoogle Scholar
  3. 3.
    Das Sarma, S., Lilly, M.P., Hwang, E.H., Pfeiffer, L.N., West, K.W., Reno, J.L.: Two-dimensional metal-insulator transition as a percolation transition in a high-mobility electron system. Phys. Rev. Lett. 94, 136401 (2005)CrossRefGoogle Scholar
  4. 4.
    Ohtomo, A., Muller, D.A., Grazul, J.L., Hwang, H.Y.: Artificial charge-modulationin atomic-scale perovskite titanate superlattices. Nature 419, 378 (2002)CrossRefGoogle Scholar
  5. 5.
    Ohtomo, A., Hwang, H.Y.: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423 (2004)CrossRefGoogle Scholar
  6. 6.
    Son, J., Moetakef, P., Jalan, B., Bierwagen, O., Wright, N.J., Engel-Herbert, R., Stemmer, S.: Epitaxial SrTiO3 films with electron mobilities exceeding 30,000 cm2v-1s-1. Nat. Mater. 9, 482 (2010)CrossRefGoogle Scholar
  7. 7.
    Longo, J.M., Raccah, P.M., Goodenough, J.B.: Magntetic properties of SrRuO3 and CaRuO3. J. Appl. Phys. 39, 1327 (1968)CrossRefGoogle Scholar
  8. 8.
    Mahadevan, P., Aryasetiawan, F., Janotti, A., Sasaki, T.: Evolution of the electronic structure of a ferromagnetic metal: Case of SrRuO3. Phys. Rev. B 80, 035106 (2009)CrossRefGoogle Scholar
  9. 9.
    Kostic, P., Okada, Y., Collins, N.C., Schlesinger, Z., Reiner, J.W., Klein, L., Kapitulnik, A., Geballe, T.H., Beasley, M.R.: Non-Fermi-liquid behavior of SrRuO3: Evidence from infrared conductivity. Phys. Rev. Lett. 81, 2498 (1998)CrossRefGoogle Scholar
  10. 10.
    Nakatsugawa, H., Iguchi, E., Oohara, Y.: Electronic structures and magnetic properties in Sr1−xLaxRuO3(0.0 ≤ x ≤ 0.5). J. Phys.: Condens. Matter 14, 415 (2002)CrossRefGoogle Scholar
  11. 11.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169 (1996)CrossRefGoogle Scholar
  12. 12.
    Kresse, G., Furthmüller, J.: Efficiency of ab initio total-energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  13. 13.
    Blochl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)CrossRefGoogle Scholar
  14. 14.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)CrossRefGoogle Scholar
  15. 15.
    Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., Sutton, A.P.: Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U Study. Phys. Rev. B 57, 1505 (1998)CrossRefGoogle Scholar
  16. 16.
    Aryasetiawan, F., Imada, M., Georges, A., Kotliar, G., Biermann, S., Lichtenstein, A.I.: Frequency-dependent local interactions and low-energy effective models from electronic structure calculations. Phys. Rev. B 70, 195104 (2004)CrossRefGoogle Scholar
  17. 17.
    Yoshimatsu, K., Okabe, T., Kumigashira, H., Okamoto, S., Aizaki, S., Fujimor, A., Oshima, M.: Dimensional-crossover-driven metal-insulator transition in SrVO3 ultrathin films. Phys. Rev. Lett. 104, 147601 (2010)CrossRefGoogle Scholar
  18. 18.
    Scherwitzl, R., Zubko, P., Lichtensteiger, C., Triscone, J.M.: Electric-field tuning of the metal-insulator transition in ultrathin films of LaNiO3. Appl. Phys. Lett. 95, 222114 (2009)CrossRefGoogle Scholar
  19. 19.
    Basletic, M., Maurice, J.L., Carretero, C., Harranz, G., Copie, O., Bibes, M., Jacquet, E., Bouzehouane, K., Fusil, S., Barthelemy, A.: Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures. Nat. Mat. 7, 621 (2008)CrossRefGoogle Scholar
  20. 20.
    Toyota, D., Ohkubo, I., Kumigashira, H., Oshima, M., Lipmaa, M., Takizawa, M., Fujimori, A., Ono, K., Kawasaki, M., Koinuma, H.: Thickness-dependent electronic structure of ultrathin SrRuO3 films studied by in situ photoemission spectroscopy. Appl. Phys. Lett. 87, 162508 (2005)CrossRefGoogle Scholar
  21. 21.
    Xia, J., Siemons, W., Koster, G., Beasley, M.R., Kapitulnik, A.: Critical thickness for itinerant ferromagnetism in ultrathin films of SrRuO3. Phys. Rev B 79, 140407 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.S.N. Bose National Centre for Basic SciencesSalt LakeIndia

Personalised recommendations