Skip to main content

Electronic Properties of Post-transition Metal Oxide Semiconductor Surfaces

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 149))

Abstract

Metal oxides such as ZnO, Ga2O3, CdO, In2O3, and SnO2 exhibit high degree of transparency to visible light while supporting high levels electrical conductivity. The causes of the conductivity and the role played by the surface are current topics of research. This chapter presents a systematic study of the electronic structure and electrical properties of these post-transition metal oxides (PTMO) using a combination of X-ray photoelectron spectroscopy, angle-resolved photoelectron spectroscopy, Hall effect, infrared reflectivity, and optical absorption spectroscopy measurements. Evidence of surface electron accumulation in these PTMO is presented. It is found that for CdO and In2O3, electron accumulation is observed even in the absence of extremely high doping levels. The results also indicate that despite the strong tendency to exhibit surface electron accumulation, these materials can also exhibit an electron depletion layer under the appropriate surface stoichiometry conditions or when certain anions are adsorbed. The proclivity towards surface electron accumulation shown by the PTMOs is discussed in terms of bulk band structure, surface states, and the position of their band edges in an absolute energy scale. The electronic properties of thin films and bulk crystals of the PTMO surfaces also provide information vital for the interpretation of conductivity measurements of PTMO nanostructures, which are often dominated by surface effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    While this picture may be complicated somewhat by many-body effects within the surface space-charge region, as will be discussed later in this chapter, it still provides a correct qualitative and indeed semi-quantitative picture of the surface space-charge characteristics of a given material.

References

  1. Calarco, R., Marso, M.: GaN and InN nanowires grown by MBE: A comparison. Appl. Phys. A 87, 499–503 (2007)

    Article  CAS  Google Scholar 

  2. Richter, T., Lüth, H., Schäpers, Th, Meijers, R., Jeganathan, K., Estévez Hernández, S., Calarco, R., Marso, M.: Electrical transport properties of single undoped and n-type doped InN nanowires. Nanotechnology 20, 405206 (1–6) (2009)

    Article  Google Scholar 

  3. Mahboob, I., Veal, T.D., McConville, C.F., Lu, H., Schaff, W.J.: Intrinsic electron accumulation at clean InN surfaces. Phys. Rev. Lett. 92, 036804 (1–4) (2004)

    Article  Google Scholar 

  4. King, P.D.C., Veal, T.D., Lu, H., Jefferson, P.H., Hatfield, S.A., Schaff, W.J., McConville, C.F.: Surface electronic properties of n- and p-type InGaN alloys. Phys. Stat. Sol. (b) 245, 881–883 (2008)

    Article  CAS  Google Scholar 

  5. Comini, E., Baratto, C., Faglia, G., Ferroni, M., Vomiero, A., Sberveglieri, G.: Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors. Prog. Mater. Sci. 54, 1–67 (2009)

    Article  CAS  Google Scholar 

  6. King, P.D.C., Veal, T.D., McConville, C.F.: Nonparabolic coupled Poisson-Schrödinger solutions for quantized electron accumulation layers: Band bending, charge profile, and subbands at InN surfaces. Phys. Rev. B 77, 125305 (1–7) (2008)

    Google Scholar 

  7. Heiland, G., Kunstman, P.: Polar surfaces of ZnO crystals. Surf. Sci. 13, 72–84 (1969)

    Article  CAS  Google Scholar 

  8. Schmidt, O., Kiesel, P., Ehrentraut, D., Fukuda, T., Johnson, N.M.: Electrical characterization of ZnO, including analysis of surface conductivity. Appl. Phys. A 88, 71–75 (2007)

    Article  CAS  Google Scholar 

  9. Allen, M.W., Swartz, C.H., Myers, T.H., Veal, T.D., McConville, C.F., Durbin, S.M.: Bulk transport measurements in ZnO: The effect of surface electron layers. Phys. Rev. B 81, 075211 (1–6) (2010)

    Google Scholar 

  10. Chiu, S.-P., Lin, Y.-H., Lin, J.-J.: Electrical conduction mechanisms in natively doped ZnO nanowires. Nanotechnology 20, 015203 (1–8) (2009)

    Google Scholar 

  11. Posternak, M., Baldereschi, A., Catellani, A., Resta, R.: Ab initio study of the spontaneous polarization of pyroelectric BeO. Phys. Rev. Lett. 64, 1777–1780 (1990)

    Article  CAS  Google Scholar 

  12. Roy, R., Hill, V.G., Osborn, E.F.: Polymorphism of Ga2O3 and the system Ga2O3-H2O. J. Am. Chem. Soc. 74, 719–722 (1952)

    Article  CAS  Google Scholar 

  13. Passlack, M., Schubert, E.F., Hobson, W.S., Hong, M., Moriya, N., Chu, S.N.G.: Ga2O3films for electronic and optoelectronic applications. J. Appl. Phys. 77, 686–693 (1995)

    Article  CAS  Google Scholar 

  14. Orita, M., Ohta, H., Hirano, M., Hosono, H.: Deep-ultraviolet transparent conductive β- Ga2O3thin films. Appl. Phys. Lett. 77, 4166–4168 (2000)

    Article  CAS  Google Scholar 

  15. Fleischer, M., Meixner, H.: Sensing reducing gases at high temperatures using long-term stable Ga2O3thin films. Sens. Actuators B: Chem 7, 257–261 (1992)

    Article  Google Scholar 

  16. Geistlinger, H.: Accumulation layer model for Ga2O3 thin-film gas sensors based on the Volkenstein theory of catalysis. Sens. Actuators B: Chem 18–19, 125–131 (1994)

    Article  Google Scholar 

  17. Lovejoy, T.C., Yitamben, E.N., Shamir, N., Morales, J., Villora, E.G., Shimamura, K., Zheng, S., Ohuchi, F.S., Olmstead, M.A.: Surface morphology and electronic structure of bulk single crystal β-Ga2O3(100). Appl. Phys. Lett. 94, 081906 (1–3) (2009)

    Article  Google Scholar 

  18. Jefferson, P.H., Hatfield, S.A., Veal, T.D., King, P.D.C., McConville, C.F., Zúñiga-Pérez, J., Muñoz-Sanjosé, V.: Bandgap and effective mass of epitaxial cadmium oxide. Appl. Phys. Lett. 92, 022101 (1–3) (2008)

    Article  Google Scholar 

  19. Benko, F.A., Koffyberg, F.P.: Quantum efficiency and optical transitions of CdO photoanodes. Solid State Commun. 57, 901–903 (1986)

    Article  CAS  Google Scholar 

  20. Koffyberg, F.P.: Thermoreflectance spectra of CdO: Band gaps and band-population effects. Phys. Rev. B 13, 4470–4476 (1976)

    Article  CAS  Google Scholar 

  21. King, P.D.C., Veal, T.D., Schleife, A., Zúñiga-Pérez, J., Martel, B., Jefferson, P.H., Fuchs, F., Muñoz-Sanjosé, V., Bechstedt, F., McConville, C.F.: Valence-band electronic structure of CdO, ZnO, and MgO from x-ray photoemission spectroscopy and quasi-particle-corrected density-functional theory calculations. Phys. Rev. B 79, 205205 (1–6) (2009)

    Google Scholar 

  22. Schleife, A., Fuchs, F., Furthmüller, J., Bechstedt, F.: First-principles study of ground- and excited-state properties of MgO, ZnO, and CdO polymorphs. Phys. Rev. B 73, 245212 (2006)

    Article  Google Scholar 

  23. Makuta, I.D., Poznyak, S.K., Kulak, A.I.: Hole diffusion transport and photocurrent generation in the degenerate n-CdO/electrolyte junction. Solid State Commun. 76, 65–68 (1990)

    Article  CAS  Google Scholar 

  24. Piper, L.F.J., Colakerol, L., King, P.D.C., Schleife, A., Zúñiga-Pérez, J., Glans, P.-A., Learmonth, T., Federov, A., Veal, T.D., Fuchs, F., Muñoz-Sanjosé, V., Bechstedt, F., McConville, C.F., Smith, K.E.: Observation of quantized subband states and evidence for surface electron accumulation in CdO from angle-resolved photoemission spectroscopy. Phys. Rev. B 78, 165127 (1–5) (2008)

    Article  Google Scholar 

  25. King, P.D.C., Veal, T.D., Jefferson, P.H., Zúñiga-Pérez, J., Muñoz-Sanjosé, V., McConville, C.F.: Unification of the electrical behavior of defects, impurities, and surface states in semiconductors: Virtual gap states in CdO. Phys. Rev. B 79, 035203 (1–6) (2009)

    Google Scholar 

  26. King, P.D.C., Veal, T.D., McConville, C.F., Zúñiga-Pérez, J., Muñoz-Sanjosé, V., Hopkinson, M., Rienks, E.D.L., Fuglsang, J.M., Hofmann, Ph: Surface band-gap narrowing in quantized electron accumulation layers. Phys. Rev. Lett. 104, 256803 (1–4) (2010)

    Article  Google Scholar 

  27. Weiher, R.L., Ley, R.P.: Optical properties of indium oxide. J. Appl. Phys. 37, 299–302 (1966)

    Article  CAS  Google Scholar 

  28. Matino, F., Persano, L., Arima, V., Pisignano, D., Blyth, R.I.R., Cingolani, R., Rinaldi, R.: Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition. Phys. Rev. B 72, 085437 (1–6) (2005)

    Article  Google Scholar 

  29. Walsh, A., Da Silva, J.L.F., Wei, S.-H., Körber, C., Klein, A., Piper, L.F.J., DeMasi, A., Smith, K.E., Panaccione, G., Torelli, P., Payne, D.J., Bourlange, A., Egdell, R.G.: Nature of the band gap of In2O3 revealed by first-principles calculations and x-ray spectroscopy. Phys. Rev. Lett. 100, 167402 (1–4) (2008)

    Google Scholar 

  30. Fuchs, F., Bechstedt, F.: Indium-oxide polymorphs from first principles: Quasiparticle electronic states. Phys. Rev. B 77, 155107 (1–10) (2008)

    Google Scholar 

  31. King, P.D.C., Veal, T.D., Fuchs, F., Wang, C.Y., Payne, D.J., Bourlange, A., Zhang, H., Bell, G.R., Cimalla, V., Ambacher, O., Egdell, R.G., Bechstedt, F., McConville, C.F.: Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3. Phys. Rev. B 79, 205211 (1–10) (2009)

    Google Scholar 

  32. Christou, V., Etchells, M., Renault, O., Dobson, P.J., Salata, O.V., Beamson, G., Egdell, R.G.: High resolution x-ray photoemission study of plasma oxidation of indium–tin–oxide thin film surfaces. J. Appl. Phys. 88, 5180–5187 (2000)

    Article  CAS  Google Scholar 

  33. Gassenbauer, Y., Schafranek, R., Klein, A., Zafeiratos, S., Hävecker, M., Knop-Gericke, A., Schlögl, R.: Surface states, surface potentials, and segregation at surfaces of tin-doped In2O3. Phys. Rev. B 73, 245312 (1–11) (2006)

    Article  Google Scholar 

  34. King, P.D.C., Veal, T.D., Payne, D.J., Bourlange, A., Egdell, R.G., McConville, C.F.: Surface electron accumulation and the charge neutrality level in In2O3. Phys. Rev. Lett. 101, 116808 (1–4) (2008)

    Google Scholar 

  35. Zhang, K.H.L., Payne, D.J., Palgrave, R.G., Lazarov, V.K., Chen, W., Wee, A.T.S., McConville, C.F., King, P.D.C., Veal, T.D., Panaccione, G., Lacovig, P., Egdell, R.G.: Surface structure and electronic properties of In2O3(111) single-crystal thin films grown on Y-stabilized ZrO2(111). Chem. Mater. 21, 4353–4355 (2009)

    Article  CAS  Google Scholar 

  36. Fröhlich, D., Kenklies, R., Helbig, R.: Band-gap assignment in SnO2 by two-photon spectroscopy. Phys. Rev. Lett. 41, 1750–1751 (1978)

    Article  Google Scholar 

  37. Schleife, A., Varley, J.B., Fuchs, F., Rödl, C., Bechstedt, F., Rinke, P., Janotti, A., Van de Walle, C.G.: Tin dioxide from first principles: Quasiparticle electronic states and optical properties. Phys. Rev. B 83, 035116 (2011)

    Article  Google Scholar 

  38. Batzill, M., Diebold, U.: The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47–154 (2005)

    Article  CAS  Google Scholar 

  39. Comini, E.: Metal oxide nano-crystals for gas sensing. Anal. Chim. Acta 568, 28–40 (2006)

    Article  CAS  Google Scholar 

  40. De Frésart, E., Darville, J., Gilles, J.M.: Surface properties of tin dioxide single crystals. Surf. Sci. 126, 518–522 (1983)

    Article  Google Scholar 

  41. Nagata, T., Bierwagen, O., White, M.E., Tsai, M.-Y., Speck, J.S.: Study of the Au Schottky contact formation on oxygen plasma treated n-type SnO2 (101) thin films. J. Appl. Phys. 107, 033707 (1–7) (2010)

    Google Scholar 

  42. Van de Walle, C.G., Neugebauer, J.: Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 626–628 (2003)

    Article  Google Scholar 

  43. Cox, S.F.J., Davis, E.A., Cotrell, S.P., King, P.J.C., Lord, J.S., Gil, J.M., Alberto, H.V., Vilão, R.C., Piroto Duarte, J., Ayres de Campos, N., Weidinger, A., Lichti, R.L., Irvine, S.J.C.: Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide. Phys. Rev. Lett. 86, 2601–2604 (2001)

    Article  CAS  Google Scholar 

  44. King, P.D.C., McKenzie, I., Veal, T.D.: Observation of shallow-donor muonium in Ga2O3: Evidence for hydrogen-induced conductivity. Appl. Phys. Lett. 96, 062110 (2010)

    Article  Google Scholar 

  45. King, P.D.C., Lichti, R.L., Celebi, Y.G., Gil, J.M., Vilão, R.C., Alberto, H.V., Piroto Duarte, J., Payne, D.J., Egdell, R.G., McKenzie, I., McConville, C.F., Cox, S.F.J., Veal, T.D.: Shallow donor state of hydrogen in In2O3 and SnO2: Implications for conductivity in transparent conducting oxides. Phys. Rev. B 80, 081201(R) (1–4) (2009)

    Article  Google Scholar 

  46. Heine, V.: Theory of surface states. Phys. Rev. 138, A1689–A1696 (1965)

    Article  Google Scholar 

  47. Inkson, J.C.: Deep impurities in semiconductors. I. Evanescent states and complex band structure. J. Phys. C: Solid State Phys. 13, 369–381 (1980)

    Article  CAS  Google Scholar 

  48. Tersoff, J.: Schottky barriers and semiconductor band structures. Phys. Rev. B 32, 6968–6971 (1985)

    Article  CAS  Google Scholar 

  49. Mönch, W.: Electronic Properties of Semiconductor Interfaces. Springer, Berlin (2004)

    Google Scholar 

  50. Veal, T.D., King, P.D.C., Hatfield, S.A., Bailey, L.R., McConville, C.F., Martel, B., Moreno, J.C., Frayssinet, E., Semond, F., Zúñiga-Pérez, J.: Valence band offset of the ZnO/AlN heterojunction determined by x-ray photoemission spectroscopy. Appl. Phys. Lett. 93, 202108 (1–3) (2008)

    Article  Google Scholar 

  51. King, P.D.C., Veal, T.D., Jefferson, P.H., McConville, C.F., Wang, T., Parbrook, P.J., Lu, H., Schaff, W.J.: Valence band offset of InN/AlN heterojunctions measured by x-ray photoelectron spectroscopy. Appl. Phys. Lett. 90, 132105 (1–3) (2007)

    Google Scholar 

  52. King, P.D.C., Veal, T.D., Kendrick, C.E., Bailey, L.R., Durbin, S.M., McConville, C.F.: InN/GaN valence band offset: High-resolution x-ray photoemission spectroscopy measurements. Phys. Rev. B 78, 033308 (1–3) (2008)

    Article  Google Scholar 

  53. Falabretti, B., Robertson, J.: Electronic structures and doping of SnO2, CuAlO2, and CuInO2. J. Appl. Phys. 102, 123703 (1–5) (2007)

    Article  Google Scholar 

  54. Schleife, A., Fuchs, F., Rödl, C., Furthmüller, J., Bechstedt, F.: Branch-point energies and band discontinuities of III-nitrides and III-/II-oxides from quasiparticle band-structure calculations. Appl. Phys. Lett. 94, 012104 (1–3) (2009)

    Article  Google Scholar 

  55. He, H., Orlando, R., Blanco, M.A., Pandey, R., Amzallag, E., Baraille, I., Rérat, M.: First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B 74, 195123 (1–8) (2006)

    Google Scholar 

  56. King, P.D.C., Veal, T.D., Jefferson, P.H., Hatfield, S.A., Piper, L.F.J., McConville, C.F., Fuchs, F., Furthmüller, J., Bechstedt, F., Lu, H., Schaff, W.J.: Determination of the branch-point energy of InN: Chemical trends in common-cation and common-anion semiconductors. Phys. Rev. B 77, 045316 (1–6) (2008)

    Google Scholar 

  57. Veal, T.D., McConville, C.F., Schaff, W.J. (eds.): Indium Nitride and Related Alloys. CRC Press, Boca Raton, Fl (2009)

    Google Scholar 

  58. King, P.D.C., Veal, T.D., McConville, C.F.: Unintentional conductivity of indium nitride: transport modelling and microscopic origins. J. Phys.: Condens. Matter 21, 174201 (1–7) (2009)

    Google Scholar 

Download references

Acknowledgments

The following people are gratefully acknowledged for fruitful collaborations on determining the surface electronic properties of PTMOs: P. H. Jefferson, J. Zúniga-Peréz, V. Muñoz-Sanjosé, Ch. Y. Wang, V. Cimalla, O. Ambacher, A. Bourlange, D. J. Payne, K. H. L. Zhang, R. G. Egdell, M. W. Allen, S. M. Durbin, N. Peng, W. M. Linhart, G. R. Bell, I. Maskery, L. F. J. Piper, K. E. Smith, E. D. L. Rienks, M. Fuglsang Jensen, Ph. Hofmann, F. Fuchs, A. Schleife, J. Furthmüller, and F. Bechstedt. The Engineering and Physical Sciences Research Council, UK, is acknowledged for funding a Career Acceleration Fellowship for TDV (Grant no. EP/G004447/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Veal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Veal, T.D., King, P.D.C., McConville, C.F. (2012). Electronic Properties of Post-transition Metal Oxide Semiconductor Surfaces. In: Wu, J., Cao, J., Han, WQ., Janotti, A., Kim, HC. (eds) Functional Metal Oxide Nanostructures. Springer Series in Materials Science, vol 149. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9931-3_6

Download citation

Publish with us

Policies and ethics