Skip to main content

Emergent Metal–Insulator Transitions Associated with Electronic Inhomogeneities in Low-Dimensional Complex Oxides

  • Chapter
  • First Online:
Functional Metal Oxide Nanostructures

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 149))

  • 2731 Accesses

Abstract

A prominent feature of complex oxides is the coexistence of competing electronic phases. The separation of metallic and insulating phases is believed to be responsible for a variety of emergent transport phenomena, including quantum criticality in ruthenates and colossal magnetoresistance (CMR) in manganites. Interestingly, the phase boundaries between neighboring phases can often be displaced by small perturbations such as chemical doping, heating, stress, and electric or magnetic field, leading to intriguing metal–insulator transitions (MITs). The association of the emergent MIT with electronic inhomogeneities is particularly pronounced in low-dimensional materials which are uniquely suited to studying the MIT and phase evolutions in response to modification of the order parameters. Here, we present a few examples to illustrate the intimate interplay between emergent MIT and the competing electronic phases in functional metal oxide materials, including a percolative MIT near the critical temperature of the Mott transition in a Mn-doped bilayer ruthenate Sr3Ru2O7 crystal surface, and the abrupt conductance changes and reemergent MIT in manganite nanowires of La5/8 − x Pr x Ca3/8MnO3. This experimental research has benefited from new developments in the fabrication and characterization of low-dimensional oxide materials and nanostructures. A rare glimpse of the microscopic phase separation, the dynamic phase percolation, and the strain-tuned MIT has been provided. The results indicate the critical role of electron–lattice interactions in phase separation and suggest that the origin of phase coexistence is much more strongly influenced by strain than local chemical inhomogeneity, both for ruthenates and manganites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, K.H., Lookman, T., Bishop, A.R.: Strain-induced metal-insulator phase coexistence in perovskite manganites. Nature 428, 401–404 (2004)

    Article  CAS  Google Scholar 

  2. Sarma, D.D., et al.: Direct observation of large electronic domains with memory effect in doped manganites. Phys. Rev. Lett. 93, 097202 (2004)

    Article  CAS  Google Scholar 

  3. Dagotto, E., Hotta, T., Moreo, A.: Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1–3 (2001)

    Article  CAS  Google Scholar 

  4. Moreo, A., Mayr, M., Feiguin, A., Yunoki, S., Dagotto, E.: Giant cluster coexistence in doped manganites and other compounds. Phys. Rev. Lett. 84, 5568–5571 (2000)

    Article  CAS  Google Scholar 

  5. Shenoy, V.B., Sarma, D.D., Rao, C.N.R.: Electronic phase separation in correlated oxides: the phenomenon, its present status and future prospects. Chemphyschem 7, 2053–2059 (2006)

    Article  CAS  Google Scholar 

  6. Du, C.H., et al.: Critical fluctuations and quenched disordered two-dimensional charge stripes in La5/3Sr1/3NiO4. Phys. Rev. Lett. 84, 3911–3914 (2000)

    Article  CAS  Google Scholar 

  7. Yamada, K., et al.: Doping dependence of the spatially modulated dynamical spin correlations and the superconducting-transition temperature in La2−xSrxCuO4. Phys. Rev. B 57, 6165–6172 (1998)

    Article  CAS  Google Scholar 

  8. Zimmermann, M.V., et al.: Interplay between charge, orbital, and magnetic order in Pr1−xCaxMnO3. Phys. Rev. Lett. 83, 4872–4875 (1999)

    Article  Google Scholar 

  9. Tseng, A.A., Notargiacomo, A., Chen, T.P.: Nanofabrication by scanning probe microscope lithography: a review. J. Vac. Sci. Technol. B 23, 877–894 (2005)

    Article  CAS  Google Scholar 

  10. Hamada, M., Eguchi, T., Akiyama, K., Hasegawa, Y.: Nanoscale lithography with frequency-modulation atomic force microscopy. Rev. Sci. Instrum. 79, 123706 (2008)

    Article  Google Scholar 

  11. Sarkar, T., Ghosh, B., Raychaudhuri, A.K., Chatterji, T.: Crystal structure and physical properties of half-doped manganite nanocrystals of less than 100-nm size. Phys. Rev. B 77, 235112 (2008)

    Article  Google Scholar 

  12. Shankar, K., Raychaudhuri, A.K.: Low-temperature polymer precursor-based synthesis of nanocrystalline particles of lanthanum calcium manganese oxide (La0.67Ca0.33MnO3) with enhanced ferromagnetic transition temperature. J. Mater. Res. 21, 27–33 (2006)

    Article  CAS  Google Scholar 

  13. Petit, D., Faulkner, C.C., Johnstone, S., Wood, D., Cowburn, R.P.: Nanometer scale patterning using focused ion beam milling. Rev. Sci. Instrum. 76, 026105 (2005)

    Article  Google Scholar 

  14. Pallecchi, I., et al.: Investigation of FIB irradiation damage in La0.7Sr0.3MnO3 thin films. J. Magn. Magn. Mater. 320, 1945–1951 (2008)

    Article  CAS  Google Scholar 

  15. Grigorescu, A.E., Hagen, C.W.: Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art. Nanotechnology 20, 292001 (2009)

    Article  CAS  Google Scholar 

  16. Rhee, H.-G., Kim, D.-I., Lee, Y.-W.: Realization and performance evaluation of high speed autofocusing for direct laser lithography. Rev. Sci. Instrum. 80, 073103 (2009)

    Article  Google Scholar 

  17. Sun, Y., et al.: From tunneling to point contact: correlation between forces and current. Phys. Rev. B 71, 193407 (2005)

    Article  Google Scholar 

  18. Kim, T.-H., et al.: A cryogenic Quadraprobe scanning tunneling microscope system with fabrication capability for nanotransport research. Rev. Sci. Instrum. 78, 123701 (2007)

    Article  Google Scholar 

  19. Grube, H., Harrison, B.C., Jia, J., Boland, J.J.: Stability, resolution, and tip-tip imaging by a dual-probe scanning tunneling microscope. Rev. Sci. Instrum. 72, 4388–4392 (2001)

    Article  CAS  Google Scholar 

  20. Guise, O., et al.: Development and performance of the nanoworkbench: a four tip STM for conductivity measurements down to submicrometer scales. Rev. Sci. Instrum. 76, 045107 (2005)

    Article  Google Scholar 

  21. Hansen, T.M., et al.: Resolution enhancement of scanning four-point-probe measurements on two-dimensional systems. Rev. Sci. Instrum. 74, 3701–3708 (2003)

    Article  CAS  Google Scholar 

  22. Hobara, R., et al.: Variable-temperature independently driven four-tip scanning tunneling microscope. Rev. Sci. Instrum. 78, 053705 (2007)

    Article  Google Scholar 

  23. Tsukamoto, S., Siu, B., Nakagiri, N.: Twin-probe scanning tunneling microscope. Rev. Sci. Instrum. 62, 1767–1771 (1991)

    Article  Google Scholar 

  24. Kim, T.-H., Wendelken, J.F., Li, A.P., Du, G.H., Li, W.Z.: Probing electrical transport in individual carbon nanotubes and junctions. Nanotechnology 19, 485201 (2008)

    Article  Google Scholar 

  25. Zeng, C.G., Kent, P.R.C., Kim, T.-H., Li, A.P., Weitering, H.H.: Charge-order fluctuations in one-dimensional silicides. Nat. Mater. 7, 539–542 (2008)

    Article  CAS  Google Scholar 

  26. Kim, T.-H., et al.: Probing microscopic variations of superconductivity on the surface of Ba(Fe1−xCox)2As2 single crystals. Phys. Rev. B 80, 214518 (2009)

    Article  Google Scholar 

  27. Ruddlesden, S.N., Popper, P.: The compound Sr3Ti2O7 and its structure. Acta Cryst. 11, 54–55 (1958)

    Article  CAS  Google Scholar 

  28. Hossain, M.A., et al.: Crystal-field level inversion in lightly Mn-doped Sr3Ru2O7. Phys. Rev. Lett. 101, 016404 (2008)

    Article  CAS  Google Scholar 

  29. Mathieu, R., et al.: Impurity-induced transition to a Mott insulator in Sr3Ru2O7. Phys. Rev. B 72, 092404 (2005)

    Article  Google Scholar 

  30. Grigera, S.A., et al.: Magnetic field-tuned quantum criticality in the metallic ruthenate Sr3Ru2O7. Science 294, 329–332 (2001)

    Article  CAS  Google Scholar 

  31. Perry, R.S., et al.: Metamagnetism and critical fluctuations in high quality single crystals of the bilayer ruthenate Sr3Ru2O7. Phys. Rev. Lett. 86, 2661–2664 (2001)

    Article  CAS  Google Scholar 

  32. Stone, M.B., et al.: Temperature-dependent bilayer ferromagnetism in Sr3Ru2O7. Phys. Rev. B 73, 174426 (2006)

    Article  Google Scholar 

  33. Kim, T.-H., et al.: Imaging and manipulation of the competing electronic phases near the Mott metal-insulator transition. Proc. Natl Acad. Sci. USA 107, 5272–5275 (2010)

    Article  CAS  Google Scholar 

  34. Joseph Goldstein, D.E.N., Echlin, P., Lyman, C.E., Joy, D.C., Lifshin, E., Sawyer, L.C., Michael, J.R.: Scanning Electron Microscopy and X-Ray Microanalysis. Kluwer, New York (2003)

    Book  Google Scholar 

  35. Reimer, L.: Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. Springer, Berlin (1985)

    Google Scholar 

  36. Castell, M.R., Perovic, D.D., Lafontaine, H.: Electronic contribution to secondary electron compositional contrast in the scanning electron microscope. Ultramicroscopy 69, 279–287 (1997)

    Article  CAS  Google Scholar 

  37. Dagotto, E.: Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005)

    Article  CAS  Google Scholar 

  38. Moreo, A., Yunoki, S., Dagotto, E.: Solid state physics – phase separation scenario for manganese oxides and related materials. Science 283, 2034–2040 (1999)

    Article  CAS  Google Scholar 

  39. Millis, A.J.: Lattice effects in magnetoresistive manganese perovskites. Nature 392, 147–150 (1998)

    Article  CAS  Google Scholar 

  40. Ikeda, S.-I., Maeno, Y., Nakatsuji, S., Kosaka, M., Uwatoko, Y.: Ground state in Sr3Ru2O7: Fermi liquid close to a ferromagnetic instability. Phys. Rev. B 62, R6089–R6092 (2000)

    Article  CAS  Google Scholar 

  41. Shaked, H., Jorgensen, J.D., Chmaissem, O., Ikeda, S., Maeno, Y.: Neutron diffraction study of the structural distortions in Sr3Ru2O7. J. Solid State Chem. 154, 361–367 (2000)

    Article  CAS  Google Scholar 

  42. Sushko, Y.V., et al.: Hydrostatic pressure effects on the magnetic susceptibility of ruthenium oxide Sr3Ru2O7: evidence for pressure-enhanced antiferromagnetic instability. Solid State Commun. 130, 341–346 (2004)

    Article  CAS  Google Scholar 

  43. Kimura, T., Tomioka, Y., Kumai, R., Okimoto, Y., Tokura, Y.: Diffuse phase transition and phase separation in Cr-doped Nd1/2Ca1/2MnO3: a relaxor ferromagnet. Phys. Rev. Lett. 83, 3940–3943 (1999)

    Article  CAS  Google Scholar 

  44. Westphal, V., Kleemann, W., Glinchuk, M.D.: Diffuse phase-transitions and random-field-induced domain states of the relaxor ferroelectric PbMg1/3Nb2/3O3. Phys. Rev. Lett. 68, 847–850 (1992)

    Article  CAS  Google Scholar 

  45. Imry, Y., Ma, S.-K.: Random-field instability of the ordered state of continuous symmetry. Phys. Rev. Lett. 35, 1399–1401 (1975)

    Article  CAS  Google Scholar 

  46. Ma, J.X., Gillaspie, D.T., Plummer, E.W., Shen, J.: Visualization of localized holes in manganite thin films with atomic resolution. Phys. Rev. Lett. 95, 237210 (2005)

    Article  CAS  Google Scholar 

  47. Zhang, J.D., et al.: Dopant-induced nanoscale electronic inhomogeneities in Ca2−xSrxRuO4. Phys. Rev. Lett. 96, 066401 (2006)

    Article  Google Scholar 

  48. Hanaguri, T., et al.: A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2−xNaxCuO2Cl2. Nature 430, 1001–1005 (2004)

    Article  CAS  Google Scholar 

  49. Qazilbash, M.M., et al.: Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007)

    Article  CAS  Google Scholar 

  50. Uehara, M., Mori, S., Chen, C.H., Cheong, S.W.: Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560–563 (1999)

    Article  CAS  Google Scholar 

  51. Zhang, L., Israel, C., Biswas, A., Greene, R.L., De Lozanne, A.: Direct observation of percolation in a manganite thin film. Science 298, 805–807 (2002)

    Article  CAS  Google Scholar 

  52. Wu, T., Mitchell, J.F.: Creation and annihilation of conducting filaments in mesoscopic manganite structures. Phys. Rev. B 74, 214423 (2006)

    Article  Google Scholar 

  53. Zhai, H.-Y., et al.: Giant discrete steps in metal-insulator transition in perovskite manganite wires. Phys. Rev. Lett. 97, 167201 (2006)

    Article  Google Scholar 

  54. Ward, T.Z., et al.: Reemergent metal-insulator transitions in manganites exposed with spatial confinement. Phys. Rev. Lett. 100, 247204 (2008)

    Article  CAS  Google Scholar 

  55. Ward, T.Z., et al.: Elastically driven anisotropic percolation in electronic phase-separated manganites. Nat. Phys. 5, 885–888 (2009)

    Article  CAS  Google Scholar 

  56. Ward, T.Z., et al.: Time-resolved electronic phase transitions in manganites. Phys. Rev. Lett. 102, 087201 (2009)

    Article  CAS  Google Scholar 

  57. Ward, T.Z., et al.: Dynamics of a first order electronic phase transition in manganites. Phys. Rev. B 83, 125125 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities (APL) and the Division of Materials Sciences and Engineering (TZW), Office of Basic Energy Sciences, U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Ping Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Li, AP., Ward, T.Z. (2012). Emergent Metal–Insulator Transitions Associated with Electronic Inhomogeneities in Low-Dimensional Complex Oxides. In: Wu, J., Cao, J., Han, WQ., Janotti, A., Kim, HC. (eds) Functional Metal Oxide Nanostructures. Springer Series in Materials Science, vol 149. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9931-3_4

Download citation

Publish with us

Policies and ethics