Skip to main content

Nanostructured Metal Oxides for Li-Ion Batteries

  • Chapter
  • First Online:
Functional Metal Oxide Nanostructures

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 149))

Abstract

Lithium-ion battery is a promising electrochemical energy storage technology to meet the emerging energy demands. Metal oxides in their various nanostructures have been extensively investigated as electrode materials for Li-ion batteries due to their unique properties. In this chapter, current investigations on metal oxides as anode materials are discussed based on their different reaction mechanisms to lithium. The latest studies on nanostructured lithium metal oxide cathode materials such as lithium iron phosphate are also discussed to provide some insight into their exceptional electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maier, J.: Nanoionics: ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805 (2005)

    CAS  Google Scholar 

  2. Whittingham, M.S., Chianelli, R.R.: Layered compounds and intercalation chemistry: an example of chemistry and diffusion in solids. J. Chem. Educ. 57, 569 (1980)

    CAS  Google Scholar 

  3. Thackeray, M.M., Johnson, P.J., De Picciotto, L.A., Bruce, P.G., Goodenough, J.B.: Electrochemical extraction of lithium from LiMn2O4. Mater. Res. Bull. 19, 179 (1984)

    CAS  Google Scholar 

  4. Colbow, K.M., Dahn, J.R., Haering, R.R.: Structure and electrochemistry of the spinel oxides LiTi2O4 and Li4/3Ti5/3O4. J. Power Sources 26, 397 (1989)

    CAS  Google Scholar 

  5. Ferg, E., Gummow, R.J., de Kock, A., Thacheray, M.M.: Spinel anodes for lithium-ion batteries. J. Electrochem. Soc. 141, L147 (1994)

    CAS  Google Scholar 

  6. Ohzuku, T., Ueda, A., Yamamoto, N.: Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431 (1995)

    CAS  Google Scholar 

  7. Kim, J., Cho, J.: Spinel Li4Ti5O12 nanowires for high-rate Li-ion intercalation electrode. Electrochem. Solid State Lett. 10, A81 (2007)

    CAS  Google Scholar 

  8. Bonino, F., Busani, L., Lazzari, M., Manstretta, M., Rivolta, B., Scrosatti, B.: Anatase as a cathode material in lithium – organic electrolyte rechargeable batteries. J. Power Sources 6, 261 (1981)

    CAS  Google Scholar 

  9. Ohzuku, T., Hirai, T.: An electrochromic display based on titanium dioxide. Electrochim. Acta 27, 1263 (1982)

    Google Scholar 

  10. Zachou-Christiansen, B., West, K., Jacobsen, R., Atlung, S.: Lithium insertion in different TiO2 modifications. Solid State Ionics 28–30, 1176 (1988)

    Google Scholar 

  11. Huang, S.Y., Kavan, L., Exnar, I., Gratzel, M.: Rocking chair lithium battery based on nanocrystalline TiO2 (anatase). J. Electrochem. Soc. 142, L142 (1995)

    CAS  Google Scholar 

  12. Yang, Z., Choi, D., Kerisit, S., Rosso, K.M., Wang, D., Zhang, J., Graff, G., Liu, J.: Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium-oxides: a review. J. Power Sources 192, 588 (2009)

    CAS  Google Scholar 

  13. Tielens, F., Calatayud, M., Beltran, A., Minot, C., Andres, J.: Lithium insertion and mobility in the TiO2-antase/titanate structure: a periodic DFT Study. J. Electroanal. Chem. 581, 216 (2005)

    CAS  Google Scholar 

  14. Gligor, N.M., de Leeuw, S.W.: Lithium diffusion in rutile structured titania. Solid State Ionics 177, 2741 (2006)

    CAS  Google Scholar 

  15. Lunell, S., Shashans, A., Ojamae, L., Lindstrom, H., Hagfeldt, A.: Li and Na diffusion in TiO2 from quantum chemical theory versus electrochemical experiment. J. Am. Chem. Soc. 119, 7374 (1997)

    CAS  Google Scholar 

  16. Macklin, W.J., Neat, R.J.: Performance of titanium dioxide-based cathodes in a lithium polymer electrolyte cell. Solid State Ionics 53, 694 (1992)

    Google Scholar 

  17. Koudriachova, M.V., Harrison, N.M., de Leeuw, S.W.: Effect of diffusion on lithium intercalation in titanium dioxide. Phys. Rev. Lett. 86, 1275 (2001)

    CAS  Google Scholar 

  18. Koudriachova, M.V., Harrison, N.M., de Leeuw, S.W.: NH4Y and HY zeolites as electrolytes in hydrogen sensors. Solid State Ionics 35, 157 (2003)

    Google Scholar 

  19. Johnson, O.W.: One-dimensional diffusion of Li in rutile. Phys. Rev. 136, A284 (1964)

    Google Scholar 

  20. Gligor, F., de Leeuw, S.W.: Lithium diffusion in rutile structured titania. Solid State Ionics 177, 2741 (2006)

    CAS  Google Scholar 

  21. Koudriachova, M.V., Harrison, N.M., de Leeuw, S.W.: Effect of diffusion on lithium intercalation in titanium dioxide. Phys. Rev. Lett. 86, 1275 (2001)

    CAS  Google Scholar 

  22. Shashans, A., Lunell, S., Bergstroem, R.: Theoretical study of lithium intercalation in rutile and anatase. Phys. Rev. B 53, 159 (1996)

    Google Scholar 

  23. Jiang, C., Honma, I., Kudo, T., Zhou, H.: Nanocrystalline rutile TiO2 electrode for high-capacity and high-rate lithium storage. Electrochem. Solid State Lett. 10, A127 (2007)

    CAS  Google Scholar 

  24. Hu, Y.-S., Lorenz, K., Guo, Y.-G., Maier, J.: High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater. 18, 1421 (2006)

    Google Scholar 

  25. Baudrin, E., Cassaignon, S., Koesch, M., Jolivet, J.-P., Dupont, L., Tarascon, J.M.: Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature. Electrochem. Commun. 9, 337 (2007)

    CAS  Google Scholar 

  26. Reddy, M.A., Pralong, V., Varadaraju, U.V., Raveau, B.: Crystalline size constraints on lithium insertion into brookite TiO2. Electrochem. Solid-State Lett. 11, A132 (2008)

    Google Scholar 

  27. Reddy, M.A., Kishore, M.S., Pralong, V., Varadaraju, U.V., Raveau, B.: Lithium intercalation into nanocrystalline brookite TiO2. Electrochem. Solid-State Lett. 10, A29 (2007)

    CAS  Google Scholar 

  28. Cava, R.J., Murphy, D.W., Zahurak, S., Santoro, A., Roth, R.S.: The crystal structures of the lithium-inserted metal oxides Li0.5 anatase, LiTi2O4 spinel, and Li2Ti2O4. J. Solid State Chem. 53, 64 (1984)

    CAS  Google Scholar 

  29. Sudant, G., Baudrin, E., Larcher, D., Tarascon, J.-M.: Electrochemical lithium reactivity with nanotextured anatase-type TiO2. J. Mater. Chem. 15, 1263 (2005)

    CAS  Google Scholar 

  30. Kavan, L., Kalbac, M., Zukalova, M., Exnar, I., Lorenzen, V., Nesper, R., Graetzel, M.: Lithium storage in nanostructured TiO2 made by hydrothermal growth. Chem. Mater. 16, 477 (2004)

    CAS  Google Scholar 

  31. Zukalova, M., Kalbac, M., Kavan, L., Exnar, I., Graetzel, M.: Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 17, 1248 (2005)

    CAS  Google Scholar 

  32. Gao, X.P., Lan, Y., Zhu, H.Y., Liu, J.W., Ge, Y.P., Wu, F., Song, D.Y.: Electrochemical performance of anatase nanotubes converted from protonated titanate hydrate nanotubes. Electrochem. Solid State Lett. 8, A26 (2005)

    CAS  Google Scholar 

  33. Armstrong, A.R., Armstrong, G., Canales, J., Garcia, R., Bruce, P.G.: Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17, 862 (2005)

    CAS  Google Scholar 

  34. Armstrong, G., Armstrong, A.R., Canales, J., Bruce, P.G.: Nanotubes with the TiO2-B structure. Chem. Comm. 41, 2454 (2005)

    Google Scholar 

  35. Armstrong, G., Armstrong, A.R., Bruce, P.G., Reale, P., Scrosati, B.: TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv. Mater. 18, 2597 (2006)

    CAS  Google Scholar 

  36. Guo, Y.-G., Hu, Y.-S., Sigle, W., Maier, J.: Superior electrode performance of nanostructured mesoporous TiO2 (Anatase) through efficient hierarchical mixed conducting networks. Adv. Mater. 19, 2087 (2007)

    CAS  Google Scholar 

  37. Wang, D., Choi, D., Li, J., Yang, Z., Nie, Z., Kou, R., Wang, C., Saraf, L.V., Zhang, J., Aksay, I.A., Liu, J.: Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3, 907 (2009)

    CAS  Google Scholar 

  38. Whittingham, M.S.: The role of ternary phases in cathode reactions. J. Electrochem. Soc. 123, 315 (1976)

    CAS  Google Scholar 

  39. Murphy, D.W., Christian, P.A., DiSalvo, F.J., Carides, J.N., Waszczak, J.V.: Lithium incorporation by V6O13 and related vanadium (+4, +5) oxide cathode materials. J. Electrochem. Soc. 128, 2053 (1981)

    CAS  Google Scholar 

  40. Li, W., Dahn, J.R., Wainwright, D.S.: Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115 (1994)

    CAS  Google Scholar 

  41. Zhang, S., Li, Y., Wu, C., Zheng, F., Xie, Y.: Novel flowerlike metastable vanadium dioxide (B) microanostructures: facile synthesis and application in aqueous lithium ion batteries. J. Phys. Chem. C 113, 15058 (2009)

    CAS  Google Scholar 

  42. Choi, N.-S., Kim, J.-S., Yin, R.-Z., Kim, S.-S.: Electrochemical properties of lithium vanadium oxcide as an anode material for lithium-ion battery. Mater. Chem. Phys. 116, 603 (2009)

    CAS  Google Scholar 

  43. Kohler, J., Makihara, H., Uegaito, H., Inoue, H., Toki, M.: LiV3O8: characterization as anode material for an aqueous rechargeable Li-ion battery system. Electrochim. Acta 46, 59 (2000)

    CAS  Google Scholar 

  44. Kim, S.-S., Ikuta, H., Wakihara, M.: Synthesis and characterization of MnV2O6 as a high capacity anode material for a lithium secondary battery. Solid State Ionics 139, 57 (2001)

    CAS  Google Scholar 

  45. Denis, S., Baudrin, E., Touboul, M., Tarascon, J.-M.: Synthesis and electrochemical properties of amorphous vanadates of general formula RVO4 (R = In, Cr, Fe, Al, Y) vs Li. J. Electrochem. Soc. 144, 4099 (1997)

    CAS  Google Scholar 

  46. Guyomard, D., Sigala, C., Le Gal la Salle, A., Piffard, Y.: New amorphous oxides as high capacity negative electrodes for lithium batteries: the LixMVO4 (M = Ni, Co, Cd, Zn; 1 < x ≤ 8). J. Power Sources 68, 692 (1997)

    CAS  Google Scholar 

  47. Son, J.T.: Novel electrode material for Li ion battery based on polycrystalline LiNbO3. Electrochem. Commun. 6, 990 (2004)

    CAS  Google Scholar 

  48. Han, J.-T., Liu, D.-Q., Song, S.-H., Kim, Y., Goodenough, J.B.: Lithium ion intercalation performance of niobium oxides: KNb5O13 and K6Nb10.8O30. Chem. Mater. 21, 4753 (2009)

    CAS  Google Scholar 

  49. Auborn, J.J., Barberio, Y.L.: Lithium intercalation cells without metallic lithium. J. Electrochem. Soc. 134, 638 (1987)

    CAS  Google Scholar 

  50. Yang, L.C., Gao, Q.S., Tang, Y., Wu, Y.P., Holze, R.: MoO2 synthesized by reduction of MoO3 with ethanol vapor as an anode material with good rate capability for the lithium ion battery. J. Power Sources 179, 357 (2008)

    CAS  Google Scholar 

  51. Yang, L.C., Gao, Q.S., Zhang, Y.H., Tang, Y., Wu, Y.P.: Tremella-like molybdenum dioxide consisting of nanosheets as an anode material for lithium ion battery. Electrochem. Commun. 10, 118 (2008)

    CAS  Google Scholar 

  52. Dillon, A.C., Mahan, A.H., Deshpande, R., Parilla, P.A., Jones, K.M., Lee, S.-H.: Metal oxide nano-particles for improved electrochromic and lithium-ion battery technologies. Thin Solid Film 516, 794 (2008)

    CAS  Google Scholar 

  53. Huang, K., Pan, Q., Yang, F., Ni, S., Wei, X., He, D.: Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. J. Phys. D: Appl. Phys. 41, 155417 (2008)

    Google Scholar 

  54. Mai, L., Hu, B., Chen, W., Qi, Y., Lao, C., Yang, R., Dai, Y., Lin Wang, Z.: Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv. Mater. 19, 3712 (2007)

    CAS  Google Scholar 

  55. Hassan, M.F., Guo, Z.P., Chen, Z., Liu, H.K.: Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries. J. Power Sources 195, 2372 (2010)

    CAS  Google Scholar 

  56. Lee, S.-H., Kim, Y.-H., Deshpande, R., Parilla, P.A., Whitney, E., Gillaspie, D.T., Jones, K.M., Mahan, A.H., Zhang, S., Dillon, A.C.: Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Adv. Mater. 20, 3627 (2008)

    CAS  Google Scholar 

  57. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.-M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496 (2000)

    CAS  Google Scholar 

  58. Balaya, P., Li, H., Kienle, L., Maier, J.: Fully reversible homogeneous and hetrogeneous Li storage in RuO2 with high capacity. Adv. Funct. Mater. 13, 621 (2003)

    CAS  Google Scholar 

  59. Li, H., Balaya, P., Maier, J.: Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 151, A1878 (2004)

    CAS  Google Scholar 

  60. Larcher, D., Sudant, G., Leriche, J.-B., Chabre, Y., Tarascon, J.-M.: The electrochemical reduction of Co3O4 in a lithium cell. J. Electrochem. Soc. 149, A234 (2002)

    CAS  Google Scholar 

  61. Larcher, D., Masquelier, C., Bonnin, D., Chabre, Y., Masson, V., Leriche, J.-B., Tarascon, J.-M.: Effect of particle size on lithium intercalation into α-Fe2O3. J. Electrochem. Soc. 150, A133 (2003)

    CAS  Google Scholar 

  62. Poizot, P., Laruelle, S., Grugeon, S., Tarascon, J.-M.: Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li. J. Electrochem. Soc. 149, A1212 (2002)

    CAS  Google Scholar 

  63. Hu, J., Li, H., Huang, X.: Cr2O3-based anode materials for Li-ion batteries. Electrochem. Solid State Lett. 8, A66 (2005)

    CAS  Google Scholar 

  64. Chen, J., Xu, L., Li, W., Gou, X.: α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 17, 582 (2005)

    CAS  Google Scholar 

  65. He, Y., Huang, L., Cai, J.-S., Zheng, X.-M., Sun, S.-G.: Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries. Electrochim. Acta 55, 1140 (2010)

    CAS  Google Scholar 

  66. Reddy, A.L.M., Shaijumon, M.M., Gowda, S.R., Ajayan, P.M.: Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 9, 1002 (2009)

    CAS  Google Scholar 

  67. Du, N., Zhang, H., Chen, B., Wu, J., Ma, X., Liu, Z., Zhang, Y., Yang, D., Huang, X., Tu, J.: Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: a highly efficient material for Li-battery applications. Adv. Mater. 19, 4505 (2007)

    CAS  Google Scholar 

  68. Li, Y., Tan, B., Wu, Y.: Freestanding mesoporous quasi-single-crystalline Co3O4 nanowire arrays. J. Am. Chem. Soc. 128, 14258 (2006)

    CAS  Google Scholar 

  69. Li, Y., Tan, B., Wu, Y.: Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 8, 265 (2008)

    CAS  Google Scholar 

  70. Ryu, J., Kim, S.-W., Kang, K., Park, C.B.: Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage. ACS Nano 4, 159 (2010)

    CAS  Google Scholar 

  71. Jiang, J., Liu, J., Ding, R., Ji, X., Hu, Y., Li, X., Hu, A., Wu, F., Zhu, Z., Huang, X.: Direct synthesis of CoO porous nanowire arrays on Ti substrate and their application as lithium-ion battery electrodes. J. Phys. Chem. C 114, 929 (2010)

    CAS  Google Scholar 

  72. Taberna, P.L., Mitra, S., Poizot, P., Simon, P., Tarascon, J.-M.: High rate-capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567 (2006)

    CAS  Google Scholar 

  73. Wang, L., Yu, Y., Chen, P.C., Zhang, D.W., Chen, C.H.: Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J. Power Sources 183, 717 (2008)

    CAS  Google Scholar 

  74. Liu, J., Li, Y., Fan, H., Zhu, Z., Jiang, J., Ding, R., Hu, Y., Huang, X.: Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: large-area design and reversible lithium storage. Chem. Mater. 22, 212 (2010)

    CAS  Google Scholar 

  75. Reddy, M.V., Yu, T., Sow, C.-H., Shen, Z.X., Lim, C.T., Subba Rao, G.V., Chowdari, B.V.R.: α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 17, 2792 (2007)

    CAS  Google Scholar 

  76. Zhang, W.-M., Wu, X.-L., Hu, J.-S., Guo, Y.-G., Wan, L.-J.: Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 18, 3941 (2008)

    CAS  Google Scholar 

  77. Xiang, J.Y., Tu, J.P., Yuan, Y.F., Wang, X.L., Huang, X.H., Zeng, Z.Y.: Electrochemical investigation on nanoflower-like CuO/Ni composite film as anode for lithium ion batteries. Electrochim. Acta 54, 1160 (2009)

    CAS  Google Scholar 

  78. Xiang, J.Y., Tu, J.P., Zhang, L., Zhou, Y., Wang, X.L., Shi, S.J.: Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries. J. Power Sources 195, 313 (2010)

    CAS  Google Scholar 

  79. Li, B., Rong, G., Xie, Y., Huang, L., Feng, C.: Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li+ batteries. Inorg. Chem. 45, 6404 (2006)

    CAS  Google Scholar 

  80. Shaju, K.M., Jiao, F., Debart, A., Bruce, P.G.: Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 9, 1837 (2007)

    CAS  Google Scholar 

  81. Lou, X.W., Deng, D., Lee, J.Y., Archer, L.A.: Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem. 18, 4397 (2008)

    CAS  Google Scholar 

  82. Liu, J., Li, Y., Ding, R., Jiang, J., Hu, Y., Ji, X., Chi, Q., Zhu, Z., Huang, X.: Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability. J. Phys. Chem. C 113, 5336 (2009)

    CAS  Google Scholar 

  83. Needham, S.A., Wang, G.X., Konstantinov, K., Tournayre, Y., Lao, Z., Liu, H.K.: Electrochemical performance of Co3O4-C composite anode materials. Electrochem. Solid State Lett. 9, A315 (2006)

    CAS  Google Scholar 

  84. Morcrette, M., Rozier, P., Dupont, L., Mugnier, E., Sannier, L., Galy, J., Tarascon, J.M.: A reversible copper extrusion-insertion electrode for rechargeable Li batteries. Nat. Mater. 2, 755 (2003)

    CAS  Google Scholar 

  85. Kim, C., Noh, M., Choi, M., Cho, J., Park, B.: Critical size of a nano SnO2 electrode for Li-secondary battery. Chem. Mater. 17, 3297 (2005)

    CAS  Google Scholar 

  86. Lou, X.W., Chen, J.S., Chen, P., Archer, L.A.: One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties. Chem. Mater. 21, 2868 (2009)

    CAS  Google Scholar 

  87. Li, N., Martin, C.R.: A high-rate, high-capacity, nanostructured Sn-based anode prepared using sol-gel template synthesis. J. Electrochem. Soc. 148, A164 (2001)

    CAS  Google Scholar 

  88. Meduri, P., Pendyala, C., Kumar, V., Sumanasekera, G.U., Sunkara, M.K.: Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Lett. 9, 612 (2009)

    CAS  Google Scholar 

  89. Jiang, L.-Y., Wu, X.-L., Guo, Y.-G., Wan, L.-J.: SnO2-based hierarchical nanomicrostructures: facile synthesis and their applications in gas sensors and lithium-ion batteries. J. Phys. Chem. C 113, 14213 (2009)

    CAS  Google Scholar 

  90. Yu, Y., Chen, C.-H., Shi, Y.: A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries. Adv. Mater. 19, 993 (2007)

    CAS  Google Scholar 

  91. Liu, H.K., Wang, G.X., Guo, Z.P., Wang, J.Z., Konstantinov, K.: Nanomaterials for lithium-ion rechargeable batteries. J. Nanosci. Nanotechnol. 6, 1 (2006)

    Google Scholar 

  92. Ye, S.H., Lv, J.Y., Gao, W.P., Wu, F., Song, D.Y.: Synthesis and electrochemical properties of LiMn2O4 spinel phase with nanostructure. Electrochim. Acta 49, 1623 (2004)

    CAS  Google Scholar 

  93. Nordliner, S., Edstrom, K., Gustafsson, T.: The performance of vanadium oxide nanorolls as cathode material in a rechargeable lithium battery. Electrochem. Solid State Lett. 4, A129 (2001)

    Google Scholar 

  94. Patrissi, C.J., Martin, C.R.: Sol-gel-based template synthesis and Li-insertion rate performance of nanostructured vanadium pentoxide. J. Electrochem. Soc. 146, 3176 (1999)

    CAS  Google Scholar 

  95. Jiao, F., Shaju, K.M., Bruce, P.G.: Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angew. Chem. Int. Ed. 44, 6550 (2005)

    CAS  Google Scholar 

  96. Hosono, E., Kudo, T., Honma, I., Matsuda, H., Zhou, H.: Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 9, 1045 (2009)

    CAS  Google Scholar 

  97. Kim, D.K., Muralidharan, P., Lee, H.W., Ruffo, R., Yang, Y., Chan, C.K., Peng, H., Hu, R., Huggins, A., Cui, Y.: Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948 (2008)

    CAS  Google Scholar 

  98. Yamada, A., Koizumi, H., Sonoyama, N., Kanno, R.: Phase change in LixFePO4. Electrochem. Solid State Lett. 8, A409 (2005)

    CAS  Google Scholar 

  99. Yamada, A., Koizumi, H., Nishimura, S.I., Sonoyama, N., Kanno, R., Yonemura, M., Nakamura, T., Kobayashi, Y.: Room-temperature miscibility gap in LixFePO4. Nat. Mater. 5, 357 (2006)

    CAS  Google Scholar 

  100. Kobayashi, G., Nishimura, S.I., Park, M.S., Kanno, R., Yashima, M., Ida, T., Yamada, A.: Isolation of solid solution phases in size-controlled LixFePO4 at room temperature. Adv. Funct. Mater. 19, 395 (2009)

    CAS  Google Scholar 

  101. Meethong, N., Huang, H.Y.S., Carter, W.C., Chiang, Y.M.: Size-dependent lithium miscibility gap in nanoscale Li1-xFePO4. Electrochem. Solid State Lett. 10, A134 (2007)

    CAS  Google Scholar 

  102. Meethong, N., Kao, Y.H., Tang, M., Huang, H.-Y., Carter, W.C., Chiang, Y.M.: Electrochemically induced phase transformation in nanoscale olivines Li1-xMPO4 (M = Fe, Mn). Chem. Mater. 20, 6189 (2008)

    CAS  Google Scholar 

  103. Lee, K.T., Kan, W.H., Nazar, L.: Proof of intercrystallite ionic transport in LiMPO4 electrodes (M = Fe, Mn). J. Am. Chem. Soc. 131, 6044 (2009)

    CAS  Google Scholar 

  104. Gibot, P., Casas-Cabanas, M., Laffont, L., Levasseur, S., Carlach, P., Hamelet, S., Tarascon, J.-M., Masquelier, C.: Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat. Mater. 7, 741 (2008)

    CAS  Google Scholar 

  105. Zhu, Y., Wang, C.: Galvanostatic intermittent titration technique for phase-transformation electrodes. J. Phys. Chem. C 114, 2830 (2010)

    CAS  Google Scholar 

  106. Chen, Z., Dahn, J.R.: Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J. Electrochem. Soc. 149, A1184 (2002)

    CAS  Google Scholar 

  107. Wang, Y., Cao, G.: Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 20, 2251 (2008)

    CAS  Google Scholar 

  108. Robertson, A.D., Armstrong, A.R., Bruce, P.G.: Layered LixMn1-yCoyO2 intercalation electrodes – influence of ion exchange on capacity and structure upon cycling. Chem. Mater. 13, 2380 (2001)

    CAS  Google Scholar 

  109. Goodenough, J.B., Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587 (2010)

    CAS  Google Scholar 

  110. Lightfoot, P., Metha, M.A., Bruce, P.G.: Crystal structure of the polymer electrolyte poly(ethylene oxide)3: LiCF3SO3. Science 262, 883 (1993)

    CAS  Google Scholar 

  111. Croce, F., Appetecchi, G.B., Persi, L., Scrosati, B.: Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456 (1998)

    CAS  Google Scholar 

  112. Maier, J.: Ionic conduction in space charge regions. Prog. Solid State Chem. 23, 171 (1995)

    CAS  Google Scholar 

  113. Croce, F., Settimi, L., Scrosati, B.: Superacid ZrO2-added, composite polymer electrolytes with improved transport properties. Electrochem. Commun. 8, 364 (2006)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunsheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Guo, J., Wang, C. (2012). Nanostructured Metal Oxides for Li-Ion Batteries. In: Wu, J., Cao, J., Han, WQ., Janotti, A., Kim, HC. (eds) Functional Metal Oxide Nanostructures. Springer Series in Materials Science, vol 149. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9931-3_14

Download citation

Publish with us

Policies and ethics