Advertisement

Metal Oxide Resistive Switching Memory

Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 149)

Abstract

Electrically triggered resistance switching phenomenon in metal oxide was extensively explored for the promising potential as an emerging nonvolatile memory. Prototype chips of large-scale array based on metal oxide memory are currently under development in industry. This chapter reviews the recent research progress of metal oxide memory specifically focusing on the following topics: (1) the underlying physics of resistance switching in metal oxides, including the experimental evidences of the filamentary conduction and oxygen ion/vacancy migration involved switching mechanism; (2) state-of-the-art device characteristics and the key performance metrics such as resistance ratio, scalability, power consumption, switching speed, reliability, and uniformity; and (3) device cell structure design considerations for integration into large-scale high-density crossbar memory arrays. Challenges and strategies for future optimization of metal oxide resistive switching memory technology were discussed.

Keywords

Resistive Switching Resistance Ratio High Resistance State Conductive Atomic Force Microscopy Resistive Switching Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Burr, G.W., Kurdi, B.N., Scott, J.C., Lam, C.H., Gopalakrishnan, K., Shenoy, R.S.: Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52, 449 (2008)Google Scholar
  2. 2.
    Kryder, M.H., Chang, S.K.: After hard drives – what comes next? IEEE Trans. Magn. 45, 3406 (2009)Google Scholar
  3. 3.
    Zhu, J.-G.: Magnetoresistie random access memory: the path to competitiveness and scalability. Proc. IEEE 96, 1786 (2008)Google Scholar
  4. 4.
    Arimoto, Y., Ishiwara, H.: Current status of ferroelectric random-access memory. MRS Bull. 29, 823 (2004)Google Scholar
  5. 5.
    Meijer, G.I.: Who wins the nonvolatile memory race? Science 319, 1625 (2008)Google Scholar
  6. 6.
    Wuttig, M., Yamada, N.: Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824 (2007)Google Scholar
  7. 7.
    Pirovano, A., Lacaita, A.L., Benvenuti, A., Pellizzer, F., Bez, R.: Electronic switching in phase-change memories. IEEE Trans. Electron Devices 51, 452 (2004)Google Scholar
  8. 8.
    Lee, S.H., Jung, Y., Agarwal, R.: Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. Nat. Nanotechnol. 2, 626 (2007)Google Scholar
  9. 9.
    Kim, S., Zhang, Y., McVittie, J.P., Jagannathan, H., Nishi, Y., Wong, H.-S.P.: Integrating phase-change memory cell with Ge Nanowire diode for crosspoint memory – experimental demonstration and analysis. IEEE Trans. Electron Devices 55, 2307 (2008)Google Scholar
  10. 10.
    Kozicki, M.N., Park, M., Mitkova, M.: Nanoscale memory elements based on solid-state electrolytes. IEEE Trans. Nanotechnol. 4, 331 (2005)Google Scholar
  11. 11.
    Wang, Z., Griffin, B., McVittie, J., Wong, S., McIntyre, C., Nishi, Y.: Resistive switching mechanism in ZnxCd1-xS nonvolatile memory devices. IEEE Electron Device Lett. 28, 14 (2007)Google Scholar
  12. 12.
    Scott, J.C., Bozano, L.D.: Nonvolatile memory elements based on organic materials. Adv. Mater. 19, 1452 (2007)Google Scholar
  13. 13.
    Hong, S.H., Kim, O., Choi, S., Ree, M.: Bipolar resistive switching in a single layer memory device based on a conjugated copolymer. Appl. Phys. Lett. 91, 093517 (2007)Google Scholar
  14. 14.
    Hickmott, T.W.: Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669 (1962)Google Scholar
  15. 15.
    Gibbons, J.F., Beadle, W.E.: Switching properties of thin NiO Films. Solid State Electron. 7, 785 (1964)Google Scholar
  16. 16.
    Dearnaley, G., Stoneham, A.M., Morgan, D.V.: Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129 (1970)Google Scholar
  17. 17.
    Asamitsu, A., Tomioka, Y., Kuwahara, H., Tokura, Y.: Current switching of resistive states in magnetoresistive manganites. Nature 388, 50 (1997)Google Scholar
  18. 18.
    Beck, A., Bednorz, J.G., Gerber, C., Rossel, C., Widmer, D.: Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139 (2000)Google Scholar
  19. 19.
    Zhuang, W.W., Pan, W., Ulrich, B.D., Lee, J.J., Stecker, L., Burmaster, A., Evans, D.R., Hsu, S.T., Tajiri, M., Shimaoka, A., Inoue, K., Naka, T., Awaya, N., Sakiyama, K., Wang, Y., Liu, S.Q., Wu, N.J., Ignatiev, A.: Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM). In: Electron devices meeting, 2002. IEDM ’02. Digest. International, San Francisco, CA, p. 193 (2002)Google Scholar
  20. 20.
    Seo, S., Lee, M.J., Seo, D.H., Jeoung, E.J., Suh, D.-S., Joung, Y.S., Yoo, I.K., Hwang, I.R., Kim, S.H., Byun, I.S., Kim, J.-S., Choi, J.S., Park, B.H.: Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85, 5655 (2004)Google Scholar
  21. 21.
    Rohde, C., Choi, B.J., Jeong, D.S., Choi, S., Zhao, J.-S., Hwang, C.S.: Identification of a determining parameter for resistive switching of TiO2 thin films. Appl. Phys. Lett. 86, 262907 (2005)Google Scholar
  22. 22.
    Lee, D., Choi, H., Sim, H., Choi, D., Hwang, H., Lee, M.-J., Seo, S.-A., Yoo, I.K.: Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications. IEEE Electron Device Lett. 26, 719 (2005)Google Scholar
  23. 23.
    Villafuerte, M., Heluani, S.P., Juárez, G., Simonelli, G., Braunstein, G., Duhalde, S.: Electric-pulse-induced reversible resistance in doped zinc oxide thin films. Appl. Phys. Lett. 90, 052105 (2007)Google Scholar
  24. 24.
    Dong, R., Lee, D.S., Xiang, W.F., Oh, S.J., Seong, D.J., Heo, S.H., Choi, H.J., Kwon, M.J., Seo, S.N., Pyun, M.B., Hasan, M., Hwang, H.: Reproducible hysteresis and resistive switching in metal-CuxO-metal heterostructures. Appl. Phys. Lett. 90, 042107 (2007)Google Scholar
  25. 25.
    Lin, C.-Y., Wu, C.-Y., Wu, C.-Y., Hu, C., Tseng, T.-Y.: Bistable resistive switching in AL2O3 memory thin films. J. Electrochem. Soc. 154, G189 (2007)Google Scholar
  26. 26.
    Lee, S., Kim, W.-G., Rhee, S.-W., Yong, K.: Resistance switching behaviors of hafnium oxide films grown by MOCVD for nonvolatile memory applications. J. Electrochem. Soc. 155, H92 (2008)Google Scholar
  27. 27.
    Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6, 833 (2007)Google Scholar
  28. 28.
    Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632 (2009)Google Scholar
  29. 29.
    Sawa, A.: Resistive switching in transition metal oxides. Mater. Today 11, 28 (2008)Google Scholar
  30. 30.
    Lee, H.Y., Chen, S., Wu, T.Y., Chen, Y.S., Wang, C.C., Tzeng, J., Lin, C.H., Chen, F., Lien, C.H., Tsai, M.-J.: Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM. In: Electron devices meeting, 2008. IEDM 2008. IEEE International, San Francisco, CA, p. 297 (2008)Google Scholar
  31. 31.
    Chen, Y.S., Lee, H.Y., Chen, S., Gu, Y., Chen, C.W., Lin, W.P., Liu, W.H., Hsu, Y.Y., Sheu, S.S., Chiang, C., Chen, W.S., Chen, F.T., Lien, C.H., Tsai, M.-J.: Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity. In: Electron devices meeting (IEDM), 2009 IEEE International, Baltimore, MD, p. 105 (2009)Google Scholar
  32. 32.
    International Technology Roadmap for Semiconductors, 2007 edition. http://www.itrs.net/ (2007)
  33. 33.
    Sato, Y., Kinoshita, K., Aoki, M., Sugiyama, Y.: Consideration of switching mechanism of binary metal oxide resistive unctions using a thermal reaction model. Appl. Phys. Lett. 90, 033503 (2007)Google Scholar
  34. 34.
    Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L., Spiga, S., Wiemer, C., Perego, M., Fanciulli, M.: Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM. In: Electron devices meeting, 2007. IEDM 2007. IEEE International, Washington, DC, p. 775 (2007)Google Scholar
  35. 35.
    Fujii, T., Kawasaki, M., Sawa, A., Akoh, H., Kawazoe, Y., Tokura, Y.: Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3. Appl. Phys. Lett. 86, 012107 (2005)Google Scholar
  36. 36.
    Xia, Y., He, W., Chen, L., Meng, X., Liu, Z.: Filed-induced resistive switching based on space-charge-limited current. Appl. Phys. Lett. 90, 022907 (2007)Google Scholar
  37. 37.
    Rozenberg, M.J., Inoue, I.H., Sanchez, M.J.: Strong electron correlation effects in nonvolatile electronic memory devices. Appl. Phys. Lett. 88, 033510 (2006)Google Scholar
  38. 38.
    Sanchez, M.J., Inoue, I.H., Rozenberg, M.J.: A mechanism for unipolar resistance switching in oxide nonvolatile memory devices. Appl. Phys. Lett. 91, 252101 (2007)Google Scholar
  39. 39.
    Nian, Y.B., Strozier, J., Wu, N.J., Chen, X., Ignatiev, A.: Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 98, 146403 (2007)Google Scholar
  40. 40.
    Jeong, D.S., Schroeder, H., Waser, R.: Mechanism for bipolar switching in a Pt/TiO2/Pt resistive switching cell. Phys. Rev. B 79, 195317 (2009)Google Scholar
  41. 41.
    Tsunoda, K., Fukuzumi, Y., Jameson, J.R., Wang, Z., Griffin, B., Nishi, Y.: Bipolar resistive switching in polycrystalline TiO2. Appl. Phys. Lett. 90, 113501 (2007)Google Scholar
  42. 42.
    Sakamoto, T., Banno, N., Iguchi, N., Kawaura, H., Sunamura, H., Fujieda, S., Terabe, K., Hasegawa, T., Aono, M.: A Ta2O5 solid-electrolyte switch with improved reliability. In: 2007 IEEE symposium on VLSI technology, Kyoto, p. 38 (2007)Google Scholar
  43. 43.
    Choi, B.J., Jeong, D.S., Kim, S.K., Rohde, C., Choi, S., Oh, J.H., Kim, H.J., Hwang, C.S., Szot, K., Waser, R., Reichenberg, B., Tiedke, S.: Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 33715 (2005)Google Scholar
  44. 44.
    Szot, K., Speier, W., Bihlmayer, G., Waser, R.: Switching the electrical resistance of individual dislocations in single-cyrstalline SrTiO3. Nat. Mater. 5, 312 (2006)Google Scholar
  45. 45.
    Kim, K.M., Choi, B.J., Koo, B.W., Choi, S., Jeong, D.S., Hwang, C.S.: Resistive switching in Pt/Al2O3/TiO2/Ru stacked structures. Electrochem. Solid State Lett. 9, G343 (2006)Google Scholar
  46. 46.
    Lee, D., Seong, D.-J., Jo, I., Xiang, F., Dong, R., Oh, S., Hwang, H.: Resistance switching of copper doped MoOx films for nonvolatile memory applications. Appl. Phys. Lett. 90, 122104 (2007)Google Scholar
  47. 47.
    Son, J.Y., Shin, Y.-H.: Direct observation of conduction filaments on resistive switching of NiO thin films. Appl. Phys. Lett. 92, 222106 (2008)Google Scholar
  48. 48.
    Muenstermann, R., Dittmann, R., Szot, K., Mi, S., Jia, C.-L., Meuffels, P., Waser, R.: Realization of regular arrays of nanoscale resistive switching blocks in thin films of Nb-doped SrTiO3. Appl. Phys. Lett. 93, 023110 (2008)Google Scholar
  49. 49.
    Liu, Q., Dou, C., Wang, Y., Long, S., Wang, W., Liu, M., Zhang, M., Chen, J.: Formation of multiple conductive filaments in the Cu/ZrO2:Cu/Pt device. Appl. Phys. Lett. 95, 023501 (2009)Google Scholar
  50. 50.
    Liu, M., Abid, Z., Wang, W., He, X., Liu, Q., Guan, W.: Multilevel resistive switching with ionic and metallic filaments. Appl. Phys. Lett. 94, 233106 (2009)Google Scholar
  51. 51.
    Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429 (2008)Google Scholar
  52. 52.
    Janousch, M., Meijer, G.I., Staub, U., Delley, B., Karg, S.F., Andreasson, B.P.: Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory. Adv. Mater. 19, 2232 (2007)Google Scholar
  53. 53.
    Park, S.-G., Kope, B.M., Nishi, Y.: First-principles study of resistance switching in rutile TiO2 with Oxygen vacancy. In: NVMTS 2008. 9th Annual, Monterey, CA, p. 1 (2008)Google Scholar
  54. 54.
    Jung, K., Seo, H., Kim, Y., Im, H., Hong, J., Park, J.-W., Lee, J.-K.: Temperature dependence of high- and low-resistance bistable states in polycrystalline NiO films. Appl. Phys. Lett. 90, 052104 (2007)Google Scholar
  55. 55.
    Lee, M.J., Park, Y., Ahn, S.E., Kang, B.S., Lee, C.B., Kim, K.H., Xianyu, W.X., Lee, J.H., Chung, S.J., Kim, Y.H., Lee, C.S., Choi, K.N., Chung, K.S.: Comparative structural and electrical analysis of NiO and Ti doped NiO as materials for resistance random access memory. J. Appl. Phys. 103, 013706 (2008)Google Scholar
  56. 56.
    Park, G.-S., Li, X.-S., Kim, D.-C., Jung, R.-J., Lee, M.-J., Se, S.: Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Appl. Phys. Lett. 91, 222103 (2007)Google Scholar
  57. 57.
    Mott, N.F., Davis, E.A.: Electronic processes in non-crystalline materials. Clarendon, Oxford (1979)Google Scholar
  58. 58.
    Ho, C.H., Lai, E.K., Lee, M.D., Pan, C.L., Yao, Y.D., Hsieh, K.Y., Liu, R., Lu, C.Y.: A highly reliable self-aligned graded oxide WOx resistance memory: conduction mechanisms and reliability. In: 2007 IEEE symposium VLSI technology, Kyoto, p. 228 (2007)Google Scholar
  59. 59.
    Liu, Q., Guan, W., Long, S., Liu, M., Zhang, S., Wang, Q., Chen, J.: Resistance switching of Au-implanted-ZrO2 film for nonvolatile memory application. J. Appl. Phys. 104, 114514 (2008)Google Scholar
  60. 60.
    Xu, N., Liu, L.F., Sun, X., Liu, X.Y., Han, D.D., Wang, Y., Han, R.Q., Kang, J.F., Yu, B.: Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories. Appl. Phys. Lett. 92, 232112 (2008)Google Scholar
  61. 61.
    Chang, W.Y., Lai, Y.-C., Wu, T.-B., Wang, S.-F., Chen, F., Tsai, M.-J.: Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Appl. Phys. Lett. 92, 022110 (2008)Google Scholar
  62. 62.
    Kim, Y.-M., Lee, J.-S.: Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices. J. Appl. Phys. 104, 114115 (2008)Google Scholar
  63. 63.
    Lin, C.-Y., Wang, S.-Y., Lee, D.-Y., Tseng, T.Y.: Electrical properties and fatigue behaviors of ZrO2 resistive switching thin films. J. Electrochem. Soc. 155, H615 (2008)Google Scholar
  64. 64.
    Wei, Z., Kanzawa, Y., Arita, K., Katoh, Y., Kawai, K., Muraoka, S., Mitani, S., Fujii, S., Katayama, K., Iijima, M., Mikawa, T., Ninomiya, T., Miyanaga, R., Kawashima, Y., Tsuji, K., Himeno, A., Okada, T., Azuma, R., Shimakawa, K., Sugaya, H., Takagi, T., Yasuhara, R., Horiba, K., Kumigashira, H., Oshima, M.: Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism. In: IEEE international electron devices meeting, 2008. IEDM 2008. IEEE International, San Francisco, CA, p. 293 (2008)Google Scholar
  65. 65.
    Lee, H.Y., Chen, P.-S., Wu, T.-Y., Chen, Y.S., Chen, F., Wang, C.-C., Tzeng, P.-J., Lin, C.H., Tsai, M.-J., Lien, C.: HfOx Bipolar resistive memory with robust endurance using AlCu as buffer electrode. IEEE Electron Device Lett. 30, 703 (2009)Google Scholar
  66. 66.
    Liu, Q., Guan, W., Long, S., Jia, R., Liu, M., Chen, J.: Resistive switching memory effect of ZrO2 films with Zr+ implanted. Appl. Phys. Lett. 92, 012117 (2008)Google Scholar
  67. 67.
    Li, X., Tung, C.H., Pey, K.L.: The nature of dielectric breakdown. Appl. Phys. Lett. 93, 072903 (2008)Google Scholar
  68. 68.
    Fujiwara, K.K., Nemoto, T., Rozenberg, M.J., Nakamura, Y., Takagi, H.: Resistance switching and formation of a conductive bridge in metal/binary oxide/metal structure for memory devices. Jpn. J. Appl. Phys. 47, 6266 (2008)Google Scholar
  69. 69.
    Buh, G.-H., Hwang, I., Park, B.H.: Time-dependent electroforming in NiO resistive switching devices. Appl. Phys. Lett. 95, 142101 (2009)Google Scholar
  70. 70.
    Yang, J.J., Miao, F., Pickett, M.D., Ohlberg, D.A.A., Stewart, D.R., Lau, C.N., Williams, R.S.: The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009)Google Scholar
  71. 71.
    Lee, M.-J., Han, S., Jeon, S.H., Park, B.H., Kang, B.S., Ahn, S.-E., Kim, K.H., Lee, C.B., Kim, C.J., Yoo, I.-K., Seo, D.H., Li, X.-S., Park, J.-B., Lee, J.-H., Park, Y.: Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Lett. 9, 1476 (2009)Google Scholar
  72. 72.
    Kim, K.M., Choi, B.J., Shin, Y.C., Choi, S., Hwang, C.S.: Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films. Appl. Phys. Lett. 91, 012907 (2007)Google Scholar
  73. 73.
    Baek, I.G., Lee, M.S., Seo, S., Lee, M.J., Seo, D.H., Suh, D.-S., Park, J.C., Park, S.O., Kim, H.S., Yoo, I.K., Chung, U.-I., Moon, I.T.: Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In: Electron devices meeting, 2004. IEDM Technical Digest. IEEE International, Washington, DC, p. 587 (2004)Google Scholar
  74. 74.
    Inoue, I.H., Yasuda, S., Akinaga, H., Takagi, H.: Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: homogeneous/inhomogeneous transition of current distribution. Phys. Rev. B 77, 035105 (2008)Google Scholar
  75. 75.
    Walcyzk, C., Wenger, C., Sohal, R., Lukosius, M., Fox, A., Dąbrowski, J., Wolansky, D., Tillack, B., Mussig, H.-J., Schroeder, T.: Pulse-induced low-power resistive switching in HfO2 metal0insulator-metal diodes for nonvolatile memory applications. J. Appl. Phys. 105, 114103 (2009)Google Scholar
  76. 76.
    Hsiung, C.-P., Gan, J.-Y., Tseng, S.-H., Tai, N.-H., Tzeng, P.-J., Lin, C.-H., Chen, F., Tsai, M.-J.: Resistance switching characteristics of TiO2 thin films prepared with reactive sputtering. Electrochem. Solid State Lett. 12, G31 (2009)Google Scholar
  77. 77.
    Cao, X., Li, X., Gao, X., Yu, W., Liu, X., Zhang, Y., Chen, L., Cheng, X.: Forming-free colossal resistive switching effect in rare-earth-oxide Gd2O3 films for memristor applications. J. Appl. Phys. 106, 073723 (2009)Google Scholar
  78. 78.
    Goux, L., Lisoni, J.G., Wang, X.P., Jurczak, M., Wouters, D.J.: Optimized Ni oxidation in 80-nm contact holes for integration of forming-free and low-power Ni/NiO/Ni memory cells. IEEE Trans. Electron Devices 56, 2363 (2009)Google Scholar
  79. 79.
    Yang, M.K., Park, J.-W., Ko, T.K., Lee, J.-K.: Bipolar resistive switching behavior in TiMnO2/Pt structure for nonvolatile memory devices. Appl. Phys. Lett. 95, 042105 (2009)Google Scholar
  80. 80.
    Yoshida, C., Kinoshita, K., Yamasaki, T., Sugiyama, Y.: Direct observation of oxygen movement during resistance switching in NiO/Pt film. Appl. Phys. Lett. 93, 042106 (2008)Google Scholar
  81. 81.
    Jeong, H.Y., Lee, J.Y., Choi, S.-Y., Kim, J.W.: Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films. Appl. Phys. Lett. 95, 162108 (2009)Google Scholar
  82. 82.
    Fujimoto, M., Koyama, H., Konagai, M., Hosoi, Y., Ishihara, K., Ohnishi, S., Awaya, N.: TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching. Appl. Phys. Lett. 89, 223509 (2006)Google Scholar
  83. 83.
    Xu, N., Gao, B., Liu, L.F., Sun, B., Liu, X.Y., Han, R.Q., Kang, J.F., Yu, B.: A unified physical model of switching behavior in oxide-based RRAM. In: 2008 Symposium on VLSI technology, Honolulu, HI, p. 100 (2008)Google Scholar
  84. 84.
    Bruchhaus, R., Waser, R.: Bipolar resistive switching in oxides for memory. In: Ramanathan, S. (ed.) Thin film metal-oxides: fundamentals and applications in electronics and energy, pp. 131–168. Springer, Heidelberg (2009)Google Scholar
  85. 85.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80 (2008)Google Scholar
  86. 86.
    Strukov, D.B., Borghetti, J.L., Williams, R.S.: Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5, 1058 (2009)Google Scholar
  87. 87.
    Pickett, M.D., Strukov, D.B., Borghetti, J.L., Yang, J.J., Snider, G.S., Stewart, D.R., Williams, R.S.: Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 074508 (2009)Google Scholar
  88. 88.
    Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L.: Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56, 186 (2009)Google Scholar
  89. 89.
    Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L.: Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56, 193 (2009)Google Scholar
  90. 90.
    Cagli, C., Nardi, F., Ielmini, D.: Modeling of set/reset operations in NiO-based resistive-switching memory devices. IEEE Trans. Electron Devices 56, 1712 (2009)Google Scholar
  91. 91.
    Jeong, D.S., Choi, B.J., Hwang, C.S.: Study of the negative resistance phenomenon in transition metal oxide films from a statistical mechanics point of view. J. Appl. Phys. 100, 113724 (2006)Google Scholar
  92. 92.
    Seo, S., Lee, M.J., Kim, D.C., Ahn, S.E., Park, B.-H., Kim, Y.S., Yoo, I.K., Byun, I.S., Hwang, I.R., Kim, S.H., Kim, J.-S., Choi, J.S., Lee, J.H., Jeon, S.H., Hong, S.H., Park, B.H.: Electrode dependence of resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 87, 263507 (2005)Google Scholar
  93. 93.
    Lee, C.B., Kang, B.S., Lee, M.J., Ahn, S.E., Stefanovich, G., Xianyu, W.X., Kim, K.H., Hur, J.H., Yin, H.X., Park, Y., Yoo, I.K., Park, J.-B., Park, B.H.: Electromigration effect of Ni Electrodes on the resistive switching characteristics of NiO thin films. Appl. Phys. Lett. 91, 082104 (2007)Google Scholar
  94. 94.
    Lee, C.B., Kang, B.S., Benayad, A., Lee, M.J., Ahn, S.-E., Kim, K.H., Stefanovich, G., Park, Y., Yoo, I.K.: Effects of metal electrodes on the resistive memory switching property of NiO thin films. Appl. Phys. Lett. 93, 042115 (2008)Google Scholar
  95. 95.
    Xu, N., Liu, L.F., Sun, X., Chen, C., Wang, Y., Han, D.D., Liu, X.Y., Han, R.Q., Kang, J.F., Yu, B.: Bipolar switching behavior in TiN/ZnO/Pt resistive nonvolatile memory with fast switching and long retention. Semicond. Sci. Technol. 23, 075019 (2008)Google Scholar
  96. 96.
    Choi, J.S., Kim, J.-S., Hwang, I.R., Hong, S.H., Jeon, S.H., Kang, S.-O., Park, B.H., Kim, D.C., Lee, M.J., Seo, S.: Different resistance switching behaviors of NiO thin films deposited on Pt and SrRuO3 electrodes. Appl. Phys. Lett. 95, 022109 (2009)Google Scholar
  97. 97.
    Lin, C.-Y., Wu, C.-Y., Wu, C.-Y., Lee, T.-C., Yang, F.-L., Hu, C., Tseng, T.-Y.: Effect of top electrode material on resistive switching properties of ZrO2 film memory devices. IEEE Electron Device Lett. 28, 366 (2007)Google Scholar
  98. 98.
    Yoshida, C., Tsunoda, K., Noshiro, H., Sugiyama, Y.: High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application. Appl. Phys. Lett. 91, 223510 (2007)Google Scholar
  99. 99.
    Gao, B., Zhang, H.W., Yu, S., Sun, B., Liu, L.F., Liu, X.Y., Wang, Y., Han, R.Q., Kang, J.F., Yu, B., Wang, Y.Y.: Oxide-based RRAM: Uniformity improvement using a new material-oriented methodology. In: 2009 Symposium on VLSI technology, Honolulu, HI, p. 30 (2009)Google Scholar
  100. 100.
    Lin, C.-Y., Wu, C.-Y., Wu, C.-Y., Tseng, T.Y., Hu, C.: Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode. J. Appl. Phys. 102, 094101 (2007)Google Scholar
  101. 101.
    Zhou, P., Yin, M., Wan, H.J., Lu, H.B., Tang, T.A., Lin, Y.Y.: Role of TaON interface for CuxO resistive switching memory based on a combined model. Appl. Phys. Lett. 94, 053510 (2009)Google Scholar
  102. 102.
    Yu, S., Wong, H.-S.P.: A phenomenological model of oxygen ion transport for metal oxide resistive switching memory. In: Memory Workshop (IMW), 2010 IEEE International, Seoul (2010)Google Scholar
  103. 103.
    Sun, X., Sun, B., Liu, L.F., Xu, N., Liu, X.Y., Han, R.Q., Kang, J.F., Xiong, G., Ma, T.P.: Wavelength tuning of GaAs LED’s through surface effects. IEEE Electron Device Lett. 30, 334 (2009)Google Scholar
  104. 104.
    Sun, B., Liu, Y.X., Liu, L.F., Xu, N., Wang, Y., Liu, X.Y., Han, R.Q., Kang, J.F.: Highly uniform resistive switching characteristics of TiN/ZrO2/Pt memory devices. J. Appl. Phys. 105, 061630 (2009)Google Scholar
  105. 105.
    Kim, S.I., Lee, J.H., Chang, Y.W., Hwang, S.S., Yoo, K.-H.: Reversible resistive switching behaviors in NiO nanowires. Appl. Phys. Lett. 93, 033503 (2008)Google Scholar
  106. 106.
    Oka, K., Yanagida, T., Nagashima, K., Tanaka, H., Kawai, T.: Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires. J. Am. Chem. Soc. 131, 3434 (2009)Google Scholar
  107. 107.
    Seo, J.W., Park, J.-W., Lim, K.S., Yang, J.-H., Kang, S.J.: Transparent resistive random access memory and its characteristics for nonvolatile resistive switching. Appl. Phys. Lett. 93, 223505 (2008)Google Scholar
  108. 108.
    Kim, S., Choi, Y.-K.: Resistive switching of aluminum oxide for flexible memory. Appl. Phys. Lett. 92, 223508 (2008)Google Scholar
  109. 109.
    Kim, S., Moon, H., Gupta, D., Yoo, S., Choi, Y.-K.: Resistive switching characteristics of sol-gel zinc oxide films for flexible memory applications. IEEE Trans. Electron Devices 56, 696 (2009)Google Scholar
  110. 110.
    Yun, D.K., Kim, K.-D., Kim, S., Lee, J.-H., Park, H.-H., Jeong, J.-H., Choi, Y.-K., Choi, D.-G.: Mass fabrication of resistive random access crossbar arrays by step and flash impring lithography. Nanotechnology 20, 445305 (2009)Google Scholar
  111. 111.
    Lee, B., Wong, H.-S.P.: NiO resistance change memory with a novel structure for 3D integration and improved confinement of conduction path. In: 2009 Symposium on VLSI technology, Honolulu, HI, p. 28 (2009)Google Scholar
  112. 112.
    Wu, Y., Lee, B., Wong, H.-S.P.: Ultra-low power Al2O3-based RRAM with 1μA reset current. In: 2010 International symposium on VLSI Technology Systems and Applications (VLSI-TSA), Hsinchu, p. 136 (2010)Google Scholar
  113. 113.
    Ahn, S.-E., Lee, M.-J., Park, Y., Kang, B.S., Lee, C.B., Kim, K.H., Seo, S., Suh, D.-S., Kim, D.-C., Hur, J., Xianyu, W., Stefanovich, G., Yin, H., Yoo, I.-K., Lee, J.-H., Park, J.-B., Baek, I.-G., Park, B.H.: Write current reduction in transition metal oxide based resistance change memory. Adv. Mater. 20, 924 (2008)Google Scholar
  114. 114.
    Kinoshita, K., Tsunoda, K., Sato, Y., Noshiro, H., Yagaki, S., Aoki, M., Sugiyama, Y.: Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance. Appl. Phys. Lett. 93, 033506 (2008)Google Scholar
  115. 115.
    Chen, A., Haddad, S., Wu, Y.-C., Fang, T.-N., Lan, Z., Avanzino, S., Pangrle, S., Buynoski, M., Rathor, M., Cai, W., Tripsas, N., Bill, C., VanBuskirk, M., Taguchi, M.: Non-volatile resistive switching for advanced memory applications. In: IEDM Technical Digest, Washington, DC, p. 765 (2005)Google Scholar
  116. 116.
    Chen, A., Haddad, S., Wu, Y.C., Fang, T.N., Kaza, S., Lan, Z.: Erasing characteristics of Cu2O metal-insulator-metal resistive switching memory. Appl. Phys. Lett. 92, 013503 (2008)Google Scholar
  117. 117.
    Sato, Y., Tsunoda, K., Kinoshita, K., Noshiro, H., Aoki, M., Sugiyama, Y.: Sub-100 μA reset current of nickel oxide resistive memory through control of filamentary conductance by current limit of MOSFET. IEEE Trans. Electron Devices 55, 1185 (2008)Google Scholar
  118. 118.
    Ielmini, D., Cagli, C., Nardi, F.: Resistance transition in metal oxides induced by electronic threshold switching. Appl. Phys. Lett. 94, 063511 (2009)Google Scholar
  119. 119.
    Chen, A., Haddad, S., Wu, Y.C., Lan, Z., Fang, T.N., Kaza, S.: Switching characteristics of Cu2O metal-insulator-metal resistive memory. Appl. Phys. Lett. 91, 123517 (2007)Google Scholar
  120. 120.
    Choi, B.J., Choi, S., Kim, K.M., Shin, Y.C., Hwang, C.S., Hwang, S.-Y., Cho, S.-S., Park, S., Hong, S.-K.: Study on the resistive switching time of TiO2 thin films. Appl. Phys. Lett. 89, 012906 (2006)Google Scholar
  121. 121.
    Tsunoda, K., Kinoshita, K., Noshiro, H., Yamazaki, Y., Iizuka, T., Ito, Y., Takahashi, A., Okano, A., Sato, Y., Fukano, T., Aoki, M., Sugiyama, Y.: Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3 V. In: Electron devices meeting, 2007. IEDM 2007. IEEE International, Washington, DC, p. 767 (2007)Google Scholar
  122. 122.
    Lv, H.B., Yin, M., Fu, X.F., Song, Y.L., Tang, L., Zhou, P., Zhao, C.H., Tang, T.A., Chen, B.A., Lin, Y.Y.: Resistive memory switching of CuxO films for a nonvolatile memory application. IEEE Electron Device Lett. 29, 309 (2008)Google Scholar
  123. 123.
    Chen, A., Haddad, S., Wu, Y.-C.: A temperature-accelerated method to evaluate data retention of resistive switching nonvolatile memory. IEEE Electron Device Lett. 29, 38 (2008)Google Scholar
  124. 124.
    Kim, D.C., Lee, M.J., Ahn, S.E., Seo, S., Park, J.C., Yoo, I.K., Baek, I.G., Kim, H.J., Yim, E.K., Lee, J.E., Park, S.O., Kim, H.S., Chung, U.-I., Moon, J.T., Ryu, B.I.: Improvement of resistive memory switching in NiO using IrO2. Appl. Phys. Lett. 88, 232106 (2006)Google Scholar
  125. 125.
    Chang, W.-Y., Cheng, K.-J., Tsai, J.-M., Chen, H.-J., Chen, F., Tsai, M.-J., Wu, T.-B.: Improvement of resistive switching characteristics in TiO2 thin films with embedded Pt nanocrystals. Appl. Phys. Lett. 95, 042104 (2009)Google Scholar
  126. 126.
    Yu, S., Gao, B., Dai, H.B., Sun, B., Liu, L.F., Liu, X.Y., Han, R.Q., Kang, J.F., Yu, B.: Improved uniformity of resistive switching behaviors in HfO2 thin films with embedded Al layers. Electrochem. Solid State Lett. 13, H36 (2010)Google Scholar
  127. 127.
    Liu, Q., Long, S., Wang, W., Zuo, Q., Zhang, S., Chen, J., Liu, M.: Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions. IEEE Electron Device Lett. 30, 1335 (2009)Google Scholar
  128. 128.
    Yoo, I.K., Kang, B.S., Park, Y.D., Lee, M.J., Park, Y.: Interpretation of nanoscale conducting paths and their control in nickel oxide (NiO) thin films. Appl. Phys. Lett. 92, 202112 (2008)Google Scholar
  129. 129.
    Yin, M., Zhou, P., Lrav, H.B., Xu, J., Song, Y.L., Fu, X.F., Tang, T.A., Chen, B.A., Lin, Y.Y.: Improvement of resistive switching in CuxO using new RESET mode. IEEE Electron Device Lett. 29, 681 (2008)Google Scholar
  130. 130.
    Liang, J., Wong, H.-S.P.: Size limitation of cross-point memory array and its dependence on data storage pattern and device parameters. In: Interconnect Technology Conference (IITC), 2010 International, Burlingame, CA (2010)Google Scholar
  131. 131.
    Lee, M.-J., Seo, S., Kim, D.-C., Ahn, S.-E., Seo, D.H., Yoo, I.-K., Baek, I.-G., Kim, D.-S., Byun, I.-S., Kim, S.-H., Hwang, I.-R., Kim, J.-S., Jeon, S.-H., Park, B.H.: A low-temperature-grown oxide diode as a new switch element for high-density nonvolatile memories. Adv. Mater. 19, 73 (2007)Google Scholar
  132. 132.
    Baek, I.G., Kim, D.C., Lee, M.J., Kim, H.-J., Yim, E.K., Lee, M.S., Lee, J.E., Ahn, S.E., Seo, S., Lee, J.H., Park, J.C., Cha, Y.K., Park, S.O., Kim, H.S., Yoo, I.K., Chung, U-I., Moon J.T., Ryu, B.I.: Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application. In: Electron devices meeting, 2005. IEDM Technical Digest. IEEE International, Washington, DC, p. 750 (2005)Google Scholar
  133. 133.
    Lee, M.-J., Park, Y., Kang, B.-S., Ahn, S.-E., Lee, C., Kim, K., Xianyu, W., Stefanovich, G., Lee, J.-H., Chung, S.-J., Kim, Y.-H., Lee, C.-S., Park, J.-B., Baek, I.-G., Yoo, I.-K.: 2-Stack 1D-1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications. In: Electron devices meeting, 2007. IEDM 2007. IEEE International, Washington, DC, p. 771 (2007)Google Scholar
  134. 134.
    Lee, M.-J., Lee, C.B., Kim, S., Yin, H., Park, J., Ahn, S.E., Kang, B.S., Kim, K.H., Stefanovich, G., Song, I., Kim, S.-W., Lee, J.H., Chung, S.J., Kim, Y.H., Lee, C.S., Park, J.B., Baek, I.G., Kim, C.J., Park, Y.: Stack friendly all-oxide 3D RRAM using GaInZnO peripheral TFT realized over glass substrates. In: Electron devices meeting, 2008. IEDM 2008. IEEE International, San Francisco, CA, p. 85 (2008)Google Scholar
  135. 135.
    Yoon, H.S., Baek, I.-G., Zhao, J., Sim, H., Park, M.Y., Lee, H., Oh, G.-H., Shin, J.C., Yeo, I.-S., Chung, U.-I.: Vertical cross-point resistance change memory for ultra-high density non-volatile memory applications. In: 2009 Symposium on VLSI technology, Honolulu, HI, p. 26 (2009)Google Scholar
  136. 136.
    Ohya, Y., Uedo, M., Takahasi, Y.: Oxide thin film diode fabricated by liquid-phase method. Jpn. J. Appl. Phys. 35, 4738 (1996)Google Scholar
  137. 137.
    Lee, W.Y., Mauri, D., Hwang, C.: High-current-density ITOx/NiOx thin-film diodes. Appl. Phys. Lett. 72, 1584 (1998)Google Scholar
  138. 138.
    Shin, Y.C., Song, J., Kim, K.M., Choi, B.J., Choi, S., Lee, H.J., Kim, G.H., Eom, T., Hwang, C.S.: (In,Sn)2O3/TiO2/Pt Schottky-type diode switch for the TiO2 resistive switching memory array. Appl. Phys. Lett. 92, 162904 (2008)Google Scholar
  139. 139.
    Okimura, K., Sakai, J.: Time-dependent characteristics of electric field-induced metal-insulator transition of planer VO2/c-Al2O3 structure. Jpn. J. Appl. Phys. 46, L813 (2007)Google Scholar
  140. 140.
    Lee, M.-J., Park, Y., Suh, D.-S., Lee, E.-H., Seo, S., Kim, D.-C., Jung, R., Kang, B.-S., Ahn, S.-E., Lee, C.B., Seo, D.H., Cha, Y.-K., Yoo, I.-K., Kim, J.-S., Park, B.H.: Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv. Mater. 19, 3919 (2007)Google Scholar
  141. 141.
    Lee, M.-J., Kim, S.I., Lee, C.B., Yin, H., Ahn, S.-E., Kang, B.S., Kim, K.H., Park, J.C., Kim, C.J., Song, I., Kim, S.W., Stefanovich, G., Lee, J.H., Chung, S.J., Kim, Y.H., Park, Y.: Low-temperature-grown transition metal oxide based storage materials and oxide transistors for high-density non-volatile memory. Adv. Funct. Mater. 19, 1587 (2009)Google Scholar
  142. 142.
    Chang, W.-Y., Ho, Y.-T., Hsu, T.-C., Chen, F., Tsai, M.-J., Wu, T.-B.: Influence of crystalline constituent on resistive switching properties of TiO2 memory films. Electrochem. Solid State Lett. 12, H135 (2009)Google Scholar
  143. 143.
    Shima, H., Takano, F., Muramatsu, H., Akinaga, H., Tamai, Y., Inque, I.H., Takagi, H.: Voltage polarity dependent low-power and high-speed resistance switching in CoO resistance random access memory with Ta electrode. Appl. Phys. Lett. 93, 113504 (2008)Google Scholar
  144. 144.
    Lee, D., Seong, D.-J., Choi, H.J., Jo, I., Dong, R., Xiang, W., Oh, S., Pyun, M., Seo, S.-O., Heo, S., Jo, M., Hwang, D.-K., Park, H.K., Chang, M., Hasan, M., Hwang, H.: Excellent uniformity and reproducible resistance switching characteristics of doped binary metal oxides for non-volatile resistance memory applications. In: IEDM Technical Digest. IEEE International, San Francisco, CA, p. 1 (2006)Google Scholar
  145. 145.
    Muraoka, S., Osano, K., Kanzawa, Y., Mitani, S., Fujii, S., Katayama, K., Katoh, Y., Wei, Z., Mikawa, T., Arita, K., Kawashima, Y., Azuma, R., Kawai, K., Shimakawa, K., Odagawa, A., Takagi, T.: Fast switching and long retention Fe-O ReRAM and its switching mechanism. In: IEDM Technical Digest. IEEE International, Washington, DC, p. 779 (2007)Google Scholar
  146. 146.
    Do, Y.H., Kwak, J.S., Bae, Y.C., Jung, K., Im, H., Hong, J.P.: Hysteretic bipolar resistive switching characteristics in TiO2 /TiO2x multilayer homojunctions. Appl. Phys. Lett. 95, 093507 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Center for Integrated SystemsStanford UniversityStanfordUSA

Personalised recommendations