Skip to main content

Oxide Nanostructures for Energy Storage

  • Chapter
  • First Online:
Functional Metal Oxide Nanostructures

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 149))

Abstract

Solving energy issues is one of the greatest challenges in the twenty-first century. Energy storage is critical as it plays an important role in almost every aspect of energy application. Batteries and electrochemical capacitors are the most widely used energy storage devices, such as in portable devices, power tools, electric vehicles, and smart grids. However, devices with better performance, such as higher energy density, longer cycle life, and faster charge/discharge rate, are still desired. Novel materials are crucial to achieve these goals. In view of this, nanostructured materials offer great promise because of the unusual properties from their small dimensions and the combination of bulk and surface properties to the overall behavior. In this chapter, the effect of nanostructures on various oxide materials in batteries/capacitors will be discussed. In general, nanostructured materials significantly enhance the power capability of both batteries and capacitors. Moreover, cycle life and energy density are also improved for many oxides, especially those with conversion reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manthiram, A., Murugan, A.V., Sarkar, A., Muraliganth, T.: Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 1, 621–638 (2008)

    Article  CAS  Google Scholar 

  2. Bruce, P.G., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)

    Article  CAS  Google Scholar 

  3. Linden, D., Reddy, T.B.: Handbook of Batteries. McGraw-Hill, New York (2001)

    Google Scholar 

  4. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    Article  CAS  Google Scholar 

  5. Yoshio, M., Brodd, R.J., Kozawa, A.: Lithium-Ion Batteries: Science and Technology. Springer, New York (2009)

    Book  Google Scholar 

  6. Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004)

    Article  CAS  Google Scholar 

  7. Cheng, F., Tao, Z., Liang, J., Chen, J.: Template-directed materials for rechargeable lithium-ion batteries. Chem. Mater. 20, 667–681 (2008)

    Article  CAS  Google Scholar 

  8. Morales, A.M., Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998)

    Article  CAS  Google Scholar 

  9. Hu, J.T., Odom, T.W., Lieber, C.M.: Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999)

    Article  CAS  Google Scholar 

  10. Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F., Yan, Y.Q.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003)

    Article  CAS  Google Scholar 

  11. Kong, X.Y., Ding, Y., Yang, R., Wang, Z.L.: Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 303, 1348–1351 (2004)

    Article  CAS  Google Scholar 

  12. Cho, K.S., Talapin, D.V., Gaschler, W., Murray, C.B.: Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 127, 7140–7147 (2005)

    Article  CAS  Google Scholar 

  13. Fan, J., Wang, T., Yu, C.Z., Tu, B., Jiang, Z.Y., Zhao, D.Y.: Ordered, nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries. Adv. Mater. 16(16), 1432 (2004)

    Article  CAS  Google Scholar 

  14. Holland, B.T., Blanford, C.F., Do, T., Stein, A.: Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem. Mater. 11(3), 795–805 (1999)

    Article  CAS  Google Scholar 

  15. Luo, J.Y., Wang, Y.G., Xiong, H.M., Xia, Y.Y.: Ordered mesoporous spinel LiMn2O4by a soft-chemical process as a cathode material for lithium-ion batteries. Chem. Mater. 19, 4791–4795 (2007)

    Article  CAS  Google Scholar 

  16. Jiao, F., Bao, J.L., Hill, A.H., Bruce, P.G.: Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47(50), 9711–9716 (2008)

    Article  CAS  Google Scholar 

  17. Chan, C.K., Peng, H.L., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)

    Article  CAS  Google Scholar 

  18. Cui, L.F., Ruffo, R., Chan, C.K., Peng, H.L., Cui, Y.: Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9(1), 491–495 (2009)

    Article  CAS  Google Scholar 

  19. Han, J.M., Myung, S.T., Sun, Y.K.: Improved electrochemical cycling behavior of ZnO-coated Li1.05Al0.1Mn1.85O3.95F0.05 spinel at 55 degrees C. J. Electrochem. Soc. 153(7), A1290–A1295 (2006)

    Article  CAS  Google Scholar 

  20. Ohzuku, T., Takehara, Z., Yoshizawa, S.: Non-aqueous lithium-titanium dioxide cell. Electrochim. Acta 24(2), 219–222 (1979)

    Article  CAS  Google Scholar 

  21. Zheng, Z.S., Tang, Z.L., Zhang, Z.T., Shen, W.C.: Review of cathode material LiMn2O4 for lithium ion batteries. J. Inorg. Mater. 18(2), 257–263 (2003)

    Google Scholar 

  22. Dickens, P.G., Reynolds, G.J.: Transport and equilibrium properties of some oxide insertion compounds. Solid State Ion. 5, 331–334 (1981)

    Article  CAS  Google Scholar 

  23. Guyomard, D., Tarascon, J.M.: Li metal-free rechargeable LiMn2O4/carbon cells – their understanding and optimization. J. Electrochem. Soc. 139(4), 937–948 (1992)

    Article  CAS  Google Scholar 

  24. Kikkawa, S., Miyazaki, S., Koizumi, M.: Electrochemical aspects of the deintercalation of layered AMO2 compounds. J. Power Sources 14(1–3), 231–234 (1985)

    Article  CAS  Google Scholar 

  25. Thomas, M., Bruce, P.G., Goodenough, J.B.: AC impedance of the Li(1-X)CoO2 electrode. Solid State Ion. 18–19, 794–798 (1986)

    Article  Google Scholar 

  26. Cho, J.: VOx-coated LiMn2O4 nanorod clusters for lithium battery cathode materials. J. Mater. Chem. 18(19), 2257–2261 (2008)

    Article  CAS  Google Scholar 

  27. Kim, D.K., Muralidharan, P., Lee, H.W., Ruffo, R., Yang, Y., Chan, C.K., Peng, H., Huggins, R.A., Cui, Y.: Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8(11), 3948–3952 (2008)

    Article  CAS  Google Scholar 

  28. Luo, J.Y., Xiong, H.M., Xia, Y.Y.: LiMn2O4 nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium ion battery. J. Phys. Chem. 112(31), 12051–12057 (2008)

    CAS  Google Scholar 

  29. Shaju, K.M., Bruce, P.G.: A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling. Chem. Mater. 20(17), 5557–5562 (2008)

    Article  CAS  Google Scholar 

  30. Hosono, E., Kudo, T., Honma, I., Matsuda, H., Zhou, H.S.: Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 9(3), 1045–1051 (2009)

    Article  CAS  Google Scholar 

  31. Gummow, R.J., Dekock, A., Thackeray, M.M.: Improved capacity retention in rechargeable 4V lithium/lithium-manganese oxide (spinel) cells. Solid State Ion. 69(1), 59–67 (1994)

    Article  CAS  Google Scholar 

  32. Amatucci, G., Tarascon, J.M.: Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries. J. Electrochem. Soc. 149(12), K31–K46 (2002)

    Article  CAS  Google Scholar 

  33. Thackeray, M.M., Shao-Horn, Y., Kahaian, A.J., Kepler, K.D., Vaughey, J.T., Hackney, S.A.: Structural fatigue in spinel electrodes in high voltage (4V) Li/LixMn2O4 cells. Electrochem. Solid State Lett. 1(1), 7–9 (1998)

    Article  CAS  Google Scholar 

  34. Xia, Y.Y., Zhou, Y.H., Yoshio, M.: Capacity fading on cycling of 4V Li/LiMn2O4 cells. J. Electrochem. Soc. 144(8), 2593–2600 (1997)

    Article  CAS  Google Scholar 

  35. Yoshio, M., Xia, Y.Y., Kumada, N., Ma, S.H.: Storage and cycling performance of Cr-modified spinel at elevated. J. Power Sources 101(1), 79–85 (2001)

    Article  CAS  Google Scholar 

  36. Chromik, R., Beck, F.: A quantitative discrimination between reversible Li+-insertion and irreversible solvent oxidation at a lithium/manganese-spinel electrode. Electrochim. Acta 45(14), 2175–2185 (2000)

    Article  CAS  Google Scholar 

  37. Gao, Y., Dahn, J.R.: Synthesis and characterization of Li1+xMn2-xO4 for Li-ion battery applications. J. Electrochem. Soc. 143(1), 100–114 (1996)

    Article  CAS  Google Scholar 

  38. Blyr, A., Sigala, C., Amatucci, G., Guyomard, D., Chabre, Y., Tarascon, J.M.: Self-discharge of LiMn2O4/C Li-ion cells in their discharged state – Understanding by means of three-electrode measurements. J. Electrochem. Soc. 145(1), 194–209 (1998)

    Article  CAS  Google Scholar 

  39. Kamarulzaman, N., et al.: Investigation of cell parameters, microstructures and electrochemical behaviour of LiMn2O4 normal and nano powders. J. Power Sources 188(1), 274–280 (2009)

    Article  CAS  Google Scholar 

  40. Peng, H.L., Xie, C., Schoen, D.T., Cui, Y.: Large anisotropy of electrical properties in layer-structured In2Se3 nanowires. Nano Lett. 8(5), 1511–1516 (2008)

    Article  CAS  Google Scholar 

  41. Meister, S., Schoen, D.T., Topinka, M.A., Minor, A.M., Cui, Y.: Void formation induced electrical switching in phase-change nanowires. Nano Lett. 8(12), 4562–4567 (2008)

    Article  CAS  Google Scholar 

  42. Duan, X.F., Lieber, C.M.: General synthesis of compound semiconductor nanowires. Adv. Mater. 12(4), 298–302 (2000)

    Article  CAS  Google Scholar 

  43. Lieber, C.M.: One-dimensional nanostructures: chemistry, physics & applications. Solid State Commun. 107(11), 607–616 (1998)

    Article  CAS  Google Scholar 

  44. Yang, Y., Xie, C., Ruffo, R., Peng, H., Kim, D.K., Cui, Y.: Single nanorod devices for battery diagnostics: a case study on LiMn2O4. Nano Lett. 9(12), 4109–4114 (2009)

    Article  CAS  Google Scholar 

  45. Linden, D., Reddy, T.B.: Handbook of Batteries, pp. 14.55–14.71. McGraw-Hill, New York (2001)

    Google Scholar 

  46. Linden, D., Reddy, T.B.: Handbook of Batteries, pp. 34.8–34.12. McGraw-Hill, New York (2001)

    Google Scholar 

  47. Devaraj, S., Munichandraiah, N.: Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. 112(11), 4406–4417 (2008)

    CAS  Google Scholar 

  48. Jiao, F., Bruce, P.G.: Mesoporous crystalline beta-MnO2 – a reversible positive electrode for rechargeable lithium batteries. Adv. Mater. 19(5), 657 (2007)

    Article  CAS  Google Scholar 

  49. Cheng, F.Y., Zhao, J.Z., Song, W., Li, C.S., Ma, H., Chen, J., Shen, P.W.: Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 45(5), 2038–2044 (2006)

    Article  CAS  Google Scholar 

  50. Ma, R.H., Bando, Y., Zhang, L.Q., Sasaki, T.: Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements. Adv. Mater. 16(11), 918–922 (2004)

    Article  CAS  Google Scholar 

  51. Xiong, Y.J., Xie, Y., Li, Z.Q., Wu, C.Z.: Growth of well-aligned gamma-MnO2 monocrystalline nanowires through a coordination-polymer-precursor route. Chem. Eur. J. 9(7), 1645–1651 (2003)

    Article  CAS  Google Scholar 

  52. Wang, X., Li, Y.D.: Selected-control hydrothermal synthesis of alpha- and beta-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124(12), 2880–2881 (2002)

    Article  CAS  Google Scholar 

  53. Wang, X., Li, Y.D.: Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem. Eur. J. 9(1), 300–306 (2003)

    Article  Google Scholar 

  54. Wu, C.Z., Xie, Y., Wang, D., Yang, J., Li, T.W.: Selected-control hydrothermal synthesis of gamma-MnO2 3D nanostructures. J. Phys. Chem. 107(49), 13583–13587 (2003)

    CAS  Google Scholar 

  55. Zhu, S.M., Zhou, H.A., Hibino, M., Honma, I., Ichihara, M.: Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv. Funct. Mater. 15(3), 381–386 (2005)

    Article  CAS  Google Scholar 

  56. Ammundsen, B., Paulsen, J.: Novel lithium-ion cathode materials based on layered manganese oxides. Adv. Mater. 13(12–13), 943 (2001)

    Article  CAS  Google Scholar 

  57. Wang, L., Maxisch, T., Ceder, G.: A first-principles approach to studying the thermal stability of oxide cathode materials. Chem. Mater. 19, 543–552 (2007)

    Article  CAS  Google Scholar 

  58. Chabre, Y., Pannetier, J.: Structural and electrochemical properties of the proton gamma-MnO2 system. Prog. Solid State Chem. 23(1), 1–130 (1995)

    Article  CAS  Google Scholar 

  59. Chan, C.K., Peng, H.L., Twesten, R.D., Jarausch, K., Zhang, X.F., Cui, Y.: Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett. 7(2), 490–495 (2007)

    Article  CAS  Google Scholar 

  60. Delmas, C., Cognacauradou, H., Cocciantelli, J.M., Menetrier, M., Doumerc, J.P.: The LiXV2O5 system - an overview of the structure modifications induced by the lithium intercalation. Solid State Ion. 69(3–4), 257–264 (1994)

    Article  CAS  Google Scholar 

  61. Whittingham, M.S., Dines, M.B.: Normal-butyllithium – effective, general cathode screening agent. J. Electrochem. Soc. 124(9), 1387–1388 (1977)

    Article  CAS  Google Scholar 

  62. Patrissi, C.J., Martin, C.R.: Sol-gel-based template synthesis and Li-insertion rate performance of nanostructured vanadium pentoxide. J. Electrochem. Soc. 146(9), 3176–3180 (1999)

    Article  CAS  Google Scholar 

  63. Sakamoto, J.S., Dunn, B.: Vanadium oxide-carbon nanotube composite electrodes for use in secondary lithium batteries. J. Electrochem. Soc. 149(1), A26–A30 (2002)

    Article  CAS  Google Scholar 

  64. Yang, Z.G., Choi, D., Kerisit, S., Rosso, K.M., Wang, D.H., Zhang, J., Graff, G., Liu, J.: Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources 192(2), 588–598 (2009)

    Article  CAS  Google Scholar 

  65. Cromer, D.T., Herrington, K.: The structures of anatase and rutile. J. Am. Chem. Soc. 77(18), 4708–4709 (1955)

    Article  CAS  Google Scholar 

  66. Banfield, J.F., Veblen, D.R.: Conversion of perovskite to anatase and TiO2 (B) – a TEM study and the use of fundamental building-blocks for understanding relationships among the TiO2 minerals. Am. Mineral. 77(5–6), 545–557 (1992)

    CAS  Google Scholar 

  67. Kavan, L., Gratzel, M., Gilbert, S.E., Klemenz, C., Scheel, H.J.: Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 118(28), 6716–6723 (1996)

    Article  CAS  Google Scholar 

  68. Takai, S., Kamata, M., Fujine, S., Yoneda, K., Kanda, K., Esaka, T.: Diffusion coefficient measurement of lithium ion in sintered Li1.33Ti1.67O4 by means of neutron radiography. Solid State Ion. 123(1–4), 165–172 (1999)

    Article  CAS  Google Scholar 

  69. Koudraichova, M.V., Harrison, N.M., de Leeuw, S.W.: Diffusion of Li-ions in rutile. An ab initio study. Solid State Ion. 157(1–4), 35–38 (2003)

    Article  CAS  Google Scholar 

  70. Koudriachova, M.V., Harrison, N.M., de Leeuw, S.W.: Effect of diffusion on lithium intercalation in titanium dioxide. Phys. Rev. Lett. 86(7), 1275–1278 (2001)

    Article  CAS  Google Scholar 

  71. Stashans, A., Lunell, S., Bergstrom, R., Hagfeldt, A., Lindquist, S.E.: Theoretical study of lithium intercalation in rutile and anatase. Phys. Rev. 53(1), 159–170 (1996)

    Article  CAS  Google Scholar 

  72. Hu, Y.S., Kienle, L., Guo, Y.G., Maier, J.: High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater. 18(11), 1421 (2006)

    Article  CAS  Google Scholar 

  73. Armstrong, G., Armstrong, A.R., Canales, J., Bruce, P.G.: TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries. Electrochem. Solid State Lett. 9(3), A139–A143 (2006)

    Article  CAS  Google Scholar 

  74. Armstrong, G., Armstrong, A.R., Bruce, P.G., Reale, P., Scrosati, B.: TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv. Mater. 18(19), 2597–2600 (2006)

    Article  CAS  Google Scholar 

  75. Armstrong, G., Armstrong, A.R., Canales, J., Bruce, P.G.: Nanotubes with the TiO2-B structure. Chem. Commun. 19, 2454–2456 (2005)

    Article  CAS  Google Scholar 

  76. Armstrong, A.R., Armstrong, G., Canales, J., Garcia, R., Bruce, P.G.: Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17(7), 862 (2005)

    Article  CAS  Google Scholar 

  77. Taberna, L., Mitra, S., Poizot, P., Simon, P., Tarascon, J.M.: High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5(7), 567–573 (2006)

    Article  CAS  Google Scholar 

  78. Li, N.C., Martin, C.R.: A high-rate, high-capacity, nanostructured Sn-based anode prepared using sol-gel template synthesis. J. Electrochem. Soc. 148(2), A164–A170 (2001)

    Article  CAS  Google Scholar 

  79. Wang, H.B., Pan, Q.M., Cheng, Y.X., Zhao, J.W., Yin, G.P.: Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. Electrochim. Acta 54(10), 2851–2855 (2009)

    Article  CAS  Google Scholar 

  80. Yan, G.F., Fang, H.S., Li, G.S., Li, L.P., Zhao, H.J., Yang, Y.: Improved Electrochemical Performance of Mg-doped ZnO Thin Film as Anode Material for Lithium Ion Batteries. Chin. J. Struct. Chem 28(4), 409–413 (2009)

    CAS  Google Scholar 

  81. Reddy, A.L.M., Shaijumon, M.M., Gowda, S.R., Ajayan, P.M.: Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 9(3), 1002–1006 (2009)

    Article  CAS  Google Scholar 

  82. Li, H., Balaya, P., Maier, J.: Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 151(11), A1878–A1885 (2004)

    Article  CAS  Google Scholar 

  83. Obrovac, M.N., Dahn, J.R.: Electrochemically active lithia/metal and lithium sulfide/metal composites. Electrochem. Solid State Lett. 5(4), A70–A73 (2002)

    Article  CAS  Google Scholar 

  84. Wang, Y., Lee, J.Y.: Molten salt synthesis of tin oxide nanorods: morphological and electrochemical features. J. Phys. Chem 108(46), 17832–17837 (2004)

    CAS  Google Scholar 

  85. Kim, C., Noh, M., Choi, M., Cho, J., Park, B.: Critical size of a nano SnO2 electrode for Li-secondary battery. Chem. Mater. 17(12), 3297–3301 (2005)

    Article  CAS  Google Scholar 

  86. Shi, Y., Guo, B., Corr, S.A., Shi, Q., Hu, Y.-S., Heier, K.R., Chen, L., Seshadri, R., Stucky, G.D.: Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett. 9(12), 4215–4220 (2009)

    Article  CAS  Google Scholar 

  87. Mitra, S., Poizot, P., Finke, A., Tarascon, J.M.: Growth and electrochemical characterization versus lithium of Fe3O4 electrodes made via electrodeposition. Adv. Funct. Mater. 16(17), 2281–2287 (2006)

    Article  CAS  Google Scholar 

  88. Lou, X.W., Wang, Y., Yuan, C.L., Lee, J.Y., Archer, L.A.: Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18(17), 2325–2329 (2006)

    Article  CAS  Google Scholar 

  89. Lee, K.T., Lytle, J.C., Ergang, N.S., Oh, S.M., Stein, A.: Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv. Funct. Mater. 15(4), 547–556 (2005)

    Article  CAS  Google Scholar 

  90. Liu, Y., Dong, H., Liu, M.L.: Well-aligned “nano-box-beams” of SnO2. Adv. Mater. 16(4), 353 (2004)

    Article  CAS  Google Scholar 

  91. Wang, Y., Lee, J.Y., Zeng, H.C.: Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem. Mater. 17(15), 3899–3903 (2005)

    Article  CAS  Google Scholar 

  92. Wang, Y., Zeng, H.C., Lee, J.Y.: Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 18(5), 645 (2006)

    Article  CAS  Google Scholar 

  93. Park, M.S., Wang, G.X., Kang, Y.M., Wexler, D., Dou, S.X., Liu, H.K.: Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Ed. 46(5), 750–753 (2007)

    Article  CAS  Google Scholar 

  94. Liu, L.J., Wang, Z.X., Li, H., Chen, L.Q., Huang, X.J.: Al2O3-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ion. 152, 341–346 (2002)

    Article  Google Scholar 

  95. Kosova, N., Devyatkina, E., Slobodyuk, A., Kaichev, V.: Surface chemistry study of LiCoO2 coated with alumina. Solid State Ion. 179(27–32), 1745–1749 (2008)

    Article  CAS  Google Scholar 

  96. Wang, Z.X., Liu, L.J., Chen, L.Q., Huang, X.J.: Structural and electrochemical characterizations of surface-modified LiCoO2 cathode materials for Li-ion batteries. Solid State Ion. 148(3–4), 335–342 (2002)

    Article  CAS  Google Scholar 

  97. Fey, G.T.K., Lu, C.Z., Huang, J.D., Kumar, T.P., Chang, Y.C.: Nanoparticulate coatings for enhanced cyclability of LiCoO2 cathodes. J. Power Sources 146(1–2), 65–70 (2005)

    Article  CAS  Google Scholar 

  98. Fey, G.T.K., Lu, C.Z., Kumar, T.P., Chang, Y.C.: TiO2 coating for long-cycling LiCoO2: A comparison of coating procedures. Sur. Coat. Technol. 199(1), 22–31 (2005)

    Article  CAS  Google Scholar 

  99. Zhao, H.L., Ling, G., Qiu, W.H., Zhang, X.H.: Improvement of electrochemical stability of LiCoO2 cathode by a nano-crystalline coating. J. Power Sources 132(1–2), 195–200 (2004)

    Article  CAS  Google Scholar 

  100. Fang, T., Duh, J.G., Sheen, S.R.: LiCoO2 cathode material coated with nano-crystallized ZnO for Li-ion batteries. Thin Solid Films 469, 361–365 (2004)

    Article  CAS  Google Scholar 

  101. Cho, J., Kim, C.S., Yoo, S.I.: Improvement of structural stability of LiCoO2 cathode during electrochemical cycling by sol-gel coating of SnO2. Electrochem. Solid State Lett. 3(8), 362–365 (2000)

    Article  CAS  Google Scholar 

  102. Kim, Y.J., Cho, J.P., Kim, T.J., Park, B.: Suppression of cobalt dissolution from the LiCoO2 cathodes with various metal-oxide coatings. J. Electrochem. Soc. 150(12), A1723–A1725 (2003)

    Article  CAS  Google Scholar 

  103. Wang, L., Li, J.G., He, X.M., Pu, W.H., Wan, C.R., Jiang, C.Y.: Recent advances in layered LiNi (x) CoyMn1-x-y O-2 cathode materials for lithium ion batteries. J. Solid State Electrochem. 13(8), 1157–1164 (2009)

    Article  CAS  Google Scholar 

  104. Arunkumar, T.A., Wu, Y., Manthiram, A.: Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li/sub 1/3/Mn/sub 2/3/]O/sub 2/-Li[M]O/sub 2/(M = Mn/sub 0.5-y/Ni/sub 0.5-y/Co/sub 2y/and Ni/sub 1-y/Co/sub y/) solid solutions. Chem. Mater. 3067, 73 (2007)

    Google Scholar 

  105. Lu, Z.H., Beaulieu, L.Y., Donaberger, R.A., Thomas, C.L., Dahn, J.R.: Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O-2. J. Electrochem. Soc. 149(6), A778–A791 (2002)

    Article  CAS  Google Scholar 

  106. Wu, Y., Manthiram, A.: High capacity, surface-modified layered Li[Li(1-x)/3Mn(2-x)/3Nix/3Cox/3]O2 cathodes with low irreversible capacity loss. Electrochem. Solid State Lett. 9(5), A221–A224 (2006)

    Article  CAS  Google Scholar 

  107. Inoue, T., Sano, M.: An investigation of capacity fading of manganese spinels stored at elevated temperature. J. Electrochem. Soc. 145(11), 3704–3707 (1998)

    Article  CAS  Google Scholar 

  108. Wohlfahrt-Mehrens, M., Vogler, C., Garche, J.: Aging mechanisms of lithium cathode materials. J. Power Sources 127(1–2), 58–64 (2004)

    Article  CAS  Google Scholar 

  109. Nishiwaki, Y., Terada, Y., Nakai, I.: Study of capacity loss mechanism of lithium manganate cathode during electrochemical cycles at high temperature by in situ TXRF and XAFS analyses. Electrochemistry 71(3), 163–168 (2003)

    CAS  Google Scholar 

  110. Eftekhari, A.: Aluminum oxide as a multi-function agent for improving battery performance of LiMn2O4 cathode. Solid State Ion. 167(3–4), 237–242 (2004)

    Article  CAS  Google Scholar 

  111. Kannan, A.M., Manthiram, A.: Surface/chemically modified LiMn2O4 cathodes for lithium-ion batteries. Electrochem. Solid State Lett. 5(7), A167–A169 (2002)

    Article  CAS  Google Scholar 

  112. Lai, C.E., Ye, W.Y., Liu, H.Y., Wang, W.J.: Preparation of TiO2-coated LiMn2O4 by carrier transfer method. Ionics 15(3), 389–392 (2009)

    Article  CAS  Google Scholar 

  113. Lim, S., Cho, J.: PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates. Electrochem. Commun. 10(10), 1478–1481 (2008)

    Article  CAS  Google Scholar 

  114. Arumugam, D., Kalaignan, G.P.: Synthesis and electrochemical characterizations of Nano-SiO2-coated LiMn2O4 cathode materials for rechargeable lithium batteries. J. Electroanal. Chem. 624(1–2), 197–204 (2008)

    Article  CAS  Google Scholar 

  115. Sun, Y.K., Hong, K.J., Prakash, J.: The effect of ZnO coating on electrochemical cycling behavior of spinel LiMn2O4 cathode materials at elevated temperature. J. Electrochem. Soc. 150(7), A970–A972 (2003)

    Article  CAS  Google Scholar 

  116. Liu, D.Q., Liu, X.Q., He, Z.Z.: Surface modification by ZnO coating for improving the elevated temperature performance of LiMn2O4. J. Alloy. Compd. 436(1–2), 387–391 (2007)

    Article  CAS  Google Scholar 

  117. Ha, H.W., Yun, N.J., Kim, K.: Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries. Electrochim. Acta 52(9), 3236–3241 (2007)

    Article  CAS  Google Scholar 

  118. Park, S.C., Kim, Y.M., Kang, Y.M., Kim, K.T., Lee, P.S., Lee, J.Y.: Improvement of the rate capability of LiMn2O4 by surface coating with LiCoO2. J. Power Sources 103(1), 86–92 (2001)

    Article  CAS  Google Scholar 

  119. Park, S.C., Kim, Y.M., Han, S.C., Ahn, S., Ku, C.H., Lee, J.Y.: The elevated temperature performance of LiMn2O4 coated with LiNi1-XCoXO2 (X = 0.2 and 1). J. Power Sources 107(1), 42–47 (2002)

    Article  CAS  Google Scholar 

  120. Chang, H.H., Chang, C.C., Su, C.Y., Wu, H.C., Yang, M.H., Wu, N.L.: Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries. J. Power Sources 185(1), 466–472 (2008)

    Article  CAS  Google Scholar 

  121. Leon, B., Vicente, C.P., Tirado, J.L., Biensan, P., Tessier, C.: Optimized chemical stability and electrochemical performance of LiFePO4 composite materials obtained by ZnO coating. J. Electrochem. Soc. 155(3), A211–A216 (2008)

    Article  CAS  Google Scholar 

  122. Miller, J.R., Simon, P.: Materials science – electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008)

    Article  CAS  Google Scholar 

  123. Conway, B.E.: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Kluwer Academic/Plenum, New York (1999)

    Google Scholar 

  124. Qu, D.Y., Shi, H.: Studies of activated carbons used in double-layer capacitors. J. Power Sources 74(1), 99–107 (1998)

    Article  CAS  Google Scholar 

  125. Wang, D.W., Li, F., Liu, M., Lu, G.Q., Cheng, H.M.: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 47(2), 373–376 (2008)

    Article  CAS  Google Scholar 

  126. Balducci, A., Dugas, R., Taberna, P.L., Simon, P., Plee, D., Mastragostino, M., Passerini, S.: High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. J. Power Sources 165(2), 922–927 (2007)

    Article  CAS  Google Scholar 

  127. Pandolfo, A.G., Hollenkamp, A.F.: Carbon properties and their role in supercapacitors. J. Power Sources 157(1), 11–27 (2006)

    Article  CAS  Google Scholar 

  128. Frackowiak, E., Beguin, F.: Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6), 937–950 (2001)

    Article  CAS  Google Scholar 

  129. Zheng, J.P., Cygan, P.J., Jow, T.R.: Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142(8), 2699–2703 (1995)

    Article  CAS  Google Scholar 

  130. Hu, C.C., Wang, C.C.: Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition. J. Electrochem. Soc. 150(8), A1079–A1084 (2003)

    Article  CAS  Google Scholar 

  131. Chen, Z., Qin, Y.C., Weng, D., Xiao, Q.F., Peng, Y.T., Wang, X.L., Li, H.X., Wei, F., Lu, Y.F.: Design and synthesis of hierarchical nanowire composites for electrochemical energy storage. Adv. Funct. Mater. 19(21), 3420–3426 (2009)

    Article  CAS  Google Scholar 

  132. Zhang, H., Cao, G.P., Wang, Z.Y., Yang, Y.S., Shi, Z.J., Gu, Z.N.: Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8(9), 2664–2668 (2008)

    Article  CAS  Google Scholar 

  133. Zhang, Y.P., Sun, X.W., Pan, L.K., Li, H.B., Sun, Z., Sun, C.P., Tay, B.K.: Carbon nanotube-ZnO nanocomposite electrodes for supercapacitors. Solid State Ion. 180(32–35), 1525–1528 (2009)

    Article  CAS  Google Scholar 

  134. Zhang, H., Cao, G.P., Yang, Y.S.: Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ. Sci. 2(9), 932–943 (2009)

    Article  CAS  Google Scholar 

  135. Galizzio, D., Tantardi, F., Trasatti, S.: Ruthenium dioxide – new electrode material. 1. Behavior in acid solutions of inert electrolytes. J. Appl. Electrochem. 4(1), 57–67 (1974)

    Article  Google Scholar 

  136. Hadzijordanov, S., Angersteinkozlowska, H., Conway, B.E.: Surface oxidation and H deposition at ruthenium electrodes – resolution of component processes in potential-sweep experiments. J. Electroanal. Chem. 60(3), 359–362 (1975)

    Article  CAS  Google Scholar 

  137. Hadzijordanov, S., Angersteinkozlowska, H., Vukovic, M., Conway, B.E.: Reversibility and growth-behavior of surface oxide-films at ruthenium electrodes. J. Electrochem. Soc. 125(9), 1471–1480 (1978)

    Article  CAS  Google Scholar 

  138. Trasatti, S., Buzzanca, G.: Ruthenium dioxide – new interesting electrode material – solid state structure and electrochemical behaviour. J. Electroanal. Chem. 29(2), A1 (1971)

    Google Scholar 

  139. Weston, J.E., Steele, B.C.H.: Proton diffusion in crystalline ruthenium dioxide. J. Appl. Electrochem. 10(1), 49–53 (1980)

    Article  CAS  Google Scholar 

  140. Arikado, T., Iwakura, C., Tamura, H.: Electrochemical behavior of ruthenium oxide electrode prepared by thermal-decomposition method. Electrochim. Acta 22(5), 513–518 (1977)

    Article  CAS  Google Scholar 

  141. Fischer, A.E., Pettigrew, K.A., Rolison, D.R., Stroud, R.M., Long, J.W.: Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors. Nano Lett. 7(2), 281–286 (2007)

    Article  CAS  Google Scholar 

  142. Jang, J.H., Han, S., Hyeon, T., Oh, S.M.: Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes. J. Power Sources 123(1), 79–85 (2003)

    Article  CAS  Google Scholar 

  143. Sugimoto, W., Iwata, H., Yasunaga, Y., Murakami, Y., Takasu, Y.: Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew. Chem. Int. Ed. 42(34), 4092–4096 (2003)

    Article  CAS  Google Scholar 

  144. Long, J.W., Swider, K.E., Merzbacher, C.I., Rolison, D.R.: Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: The nature of capacitance in nanostructured materials. Langmuir 15(3), 780–785 (1999)

    Article  CAS  Google Scholar 

  145. Shen, X.F., Ding, Y.S., Liu, J., Cai, J., Laubernds, K., Zerger, R.P., Vasiliev, A., Aindow, M., Suib, S.L.: Control of nanometer-scale tunnel sizes of porous manganese oxide octahedral molecular sieve nanomaterials. Adv. Mater. 17(7), 805 (2005)

    Article  CAS  Google Scholar 

  146. Kim, J.K., Manthiram, A.: A manganese oxyiodide cathode for rechargeable lithium batteries. Nature 390(6657), 265–267 (1997)

    Article  CAS  Google Scholar 

  147. Shinomiya, T., Gupta, V., Miura, N.: Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide. Electrochim. Acta 51(21), 4412–4419 (2006)

    Article  CAS  Google Scholar 

  148. Cheng, J., Cao, G.P., Yang, Y.S.: Characterization of sol-gel-derived NiOx xerogels as supercapacitors. J. Power Sources 159(1), 734–741 (2006)

    Article  CAS  Google Scholar 

  149. Adelkhani, H., Ghaemi, M., Jafari, S.M.: Novel nanostructured MnO2 prepared by pulse electrodeposition: characterization and electrokinetics. J. Mater. Sci. Technol. 24(6), 857–862 (2008)

    CAS  Google Scholar 

  150. Yuan, J.K., Li, W.N., Gomez, S., Suib, S.L.: Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostructures. J. Am. Chem. Soc. 127(41), 14184–14185 (2005)

    Article  CAS  Google Scholar 

  151. Yin, M., O’Brien, S.: Synthesis of monodisperse nanocrystals of manganese oxides. J. Am. Chem. Soc. 125(34), 10180–10181 (2003)

    Article  CAS  Google Scholar 

  152. Zhong, X.H., Xie, R.G., Sun, L.T., Lieberwirth, I., Knoll, W.: Synthesis of dumbbell-shaped manganese oxide nanocrystals. J. Phys. Chem. 110(1), 2–4 (2006)

    CAS  Google Scholar 

  153. Zhang, L.C., Liu, Z.H., Lv, H., Tang, X.H., Ooi, K.: Shape-controllable synthesis and electrochemical properties of nanostructured manganese oxides. J. Phys. Chem. 111(24), 8418–8423 (2007)

    CAS  Google Scholar 

  154. Wu, M.S., Chiang, P.C.J., Lee, J.T., Lin, J.C.: Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries. J. Phys. Chem. 109(49), 23279–23284 (2005)

    CAS  Google Scholar 

  155. Cheng, F.Y., Chen, J., Gou, X.L., Shen, P.W.: High-power alkaline Zn-MuO(2) batteries using gamma-MnO2 nanowires/nanotubes and electrolytic zinc powder. Adv. Mater. 17(22), 2753 (2005)

    Article  CAS  Google Scholar 

  156. Subramanian, V., Zhu, H.W., Vajtai, R., Ajayan, P.M., Wei, B.Q.: Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. 109(43), 20207–20214 (2005)

    CAS  Google Scholar 

  157. Oaki, Y., Imai, H.: One-pot synthesis of manganese oxide nanosheets in aqueous solution: Chelation-mediated parallel control of reaction and morphology. Angew. Chem. Int. Ed. 46(26), 4951–4955 (2007)

    Article  CAS  Google Scholar 

  158. Pang, S.C., Anderson, M.A., Chapman, T.W.: Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J. Electrochem. Soc. 147(2), 444–450 (2000)

    Article  CAS  Google Scholar 

  159. Hu, C.C., Tsou, T.W.: Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem. Commun. 4(2), 105–109 (2002)

    Article  CAS  Google Scholar 

  160. Kim, H., Popov, B.N.: Synthesis and characterization of MnO2-based mixed oxides as supercapacitors. J. Electrochem. Soc. 150(3), D56–D62 (2003)

    Article  CAS  Google Scholar 

  161. Hu, L., Pasta, M., La Mantia, F., Cui, L., Jeong, S., Deshazer, H.D., Choi, J.W., Han, S.M., Cui, Y.: Stretchable, porous, and conductive energy textiles. Nano Lett. 10(2), 708–714 (2010)

    Article  CAS  Google Scholar 

  162. Toupin, M., Brousse, T., Belanger, D.: Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mat. 16(16), 3184–3190 (2004)

    Article  CAS  Google Scholar 

  163. Lee, H.Y., Manivannan, V., Goodenough, J.B.: Electrochemical capacitors with KCl electrolyte. C R Acad. Sci. Ser. II C 2(11–13), 565–577 (1999)

    CAS  Google Scholar 

  164. Lee, H.Y., Goodenough, J.B.: Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144(1), 220–223 (1999)

    Article  CAS  Google Scholar 

  165. Zhang, F.B., Zhou, Y.K., Li, H.L.: Nanocrystalline NiO as an electrode material for electrochemical capacitor. Mater. Chem. Phys. 83(2–3), 260–264 (2004)

    Article  CAS  Google Scholar 

  166. Srinivasan, V., Weidner, J.W.: Studies on the capacitance of nickel oxide films: Effect of heating temperature and electrolyte concentration. J. Electrochem. Soc. 147(3), 880–885 (2000)

    Article  CAS  Google Scholar 

  167. Xing, W., Huang, C.C., Zhuo, S.P., Yuan, X., Wang, G.Q., Hulicova-Jurcakova, D., Yan, Z.F., Lu, G.Q.: Hierarchical porous carbons with high performance for supercapacitor electrodes. Carbon 47(7), 1715–1722 (2009)

    Article  CAS  Google Scholar 

  168. Srinivasan, V., Weidner, J.W.: An electrochemical route for making porous nickel oxide electrochemical capacitors. J. Electrochem. Soc. 144(8), L210–L213 (1997)

    Article  CAS  Google Scholar 

  169. Lin, C., Ritter, J.A., Popov, B.N.: Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors. J. Electrochem. Soc. 145(12), 4097–4103 (1998)

    Google Scholar 

  170. Srinivasan, V., Weidner, J.W.: Capacitance studies of cobalt oxide films formed via electrochemical precipitation. J. Power Sources 108(1–2), 15–20 (2002)

    Article  CAS  Google Scholar 

  171. Armelao, L., Barreca, D., Gross, S., Martucci, A., Tieto, M., Tondello, E.: Cobalt oxide-based films: sol-gel synthesis and characterization. J. Non Cryst. Solids 293, 477–482 (2001)

    Article  Google Scholar 

  172. Wang, Y., Yang, W.S., Zhang, S.C., Evans, D.G., Duan, X.: Synthesis and electrochemical characterization of Co-Al layered double hydroxides. J. Electrochem. Soc. 152(11), A2130–A2137 (2005)

    Article  Google Scholar 

  173. Chuang, P.Y., Hu, C.C.: The electrochemical characteristics of binary manganese-cobalt oxides prepared by anodic deposition. Mater. Chem. Phys. 92(1), 138–145 (2005)

    Article  CAS  Google Scholar 

  174. Prasad, K.R., Miura, N.: Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem. Commun. 6(10), 1004–1008 (2004)

    Article  CAS  Google Scholar 

  175. Hu, C.C., Cheng, C.Y.: Ideally pseudocapacitive behavior of amorphous hydrous cobalt-nickel oxide prepared by anodic deposition. Electrochem. Solid State Lett. 5(3), A43–A46 (2002)

    Article  CAS  Google Scholar 

  176. Wu, N.L.: Nanocrystalline oxide supercapacitors. Mater. Chem. Phys. 75(1–3), 6–11 (2002)

    Article  CAS  Google Scholar 

  177. Broughton, J.N., Brett, M.J.: Investigation of thin sputtered Mn films for electrochemical capacitors. Electrochim. Acta 49(25), 4439–4446 (2004)

    Article  CAS  Google Scholar 

  178. Kim, I.H., Kim, J.H., Kim, K.B.: Electrochemical characterization of electrochemically prepared ruthenium oxide/carbon nanotube electrode for supercapacitor application. Electrochem. Solid State Lett. 8(7), A369–A372 (2005)

    Article  CAS  Google Scholar 

  179. Wu, Y.T., Hu, C.C.: Effects of electrochemical activation and multiwall carbon nanotubes on the capacitive characteristics of thick MnO2 deposits. J. Electrochem. Soc. 151(12), A2060–A2066 (2004)

    Article  CAS  Google Scholar 

  180. Hughes, M., Shaffer, M.S.P., Renouf, A.C., Singh, C., Chen, G.Z., Fray, J., Windle, A.H.: Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv. Mater. 14(5), 382–385 (2002)

    Article  CAS  Google Scholar 

  181. Lee, B.J., Sivakkumar, S.R., Ko, J.M., Kim, J.H., Jo, S.M., Kim, D.Y.: Carbon nanofibre/hydrous RuO2 nanocomposite electrodes for supercapacitors. J. Power Sources 168(2), 546–552 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from King Abdullah University of Science and Technology (KAUST) and Global Climate and Energy Project (GCEP) at Stanford University. Yuan Yang acknowledges support from Stanford Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yang, Y., Choi, J.W., Cui, Y. (2012). Oxide Nanostructures for Energy Storage. In: Wu, J., Cao, J., Han, WQ., Janotti, A., Kim, HC. (eds) Functional Metal Oxide Nanostructures. Springer Series in Materials Science, vol 149. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9931-3_12

Download citation

Publish with us

Policies and ethics