Fluorophotometry for Pharmacokinetic Assessment

Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 2)


The corneal epithelium provides a semi-impermeable barrier between the eye and the environment. With continuous intercellular tight junctions, the corneal epithelium exerts a high resistance to passage of ions. Fluorescein staining of the corneal epithelium and stroma has been a subjective measure of the quality of the epithelial barrier. Maurice (1963) was an early pioneer in devising a slit lamp-based instrument to quantify the fluorescein in the cornea of human subjects. Cunha-Vaz (Br J Ophthalmol 59:649-656, 1975) expanded the technology to perform multiple measures of fluorescein concentration as the instrument’s focal plane moved through the eye. Since these early instruments, several commercial fluorophotometers have become available with application to drug delivery of fluorescent tracers.


Aqueous Humor Ocular Surface Corneal Epithelium Benzalkonium Chloride Sodium Fluorescein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adler CA, Maurice DM, Paterson ME (1971) The effect of viscosity of the vehicle on the penetration of fluorescein into the human eye. Exp Eye Res 11:34–42PubMedCrossRefGoogle Scholar
  2. Araie M (1986) Carboxyfluorescein. A dye for evaluating the corneal endothelial barrier function in vivo. Exp Eye Res 42:141–150PubMedCrossRefGoogle Scholar
  3. Araie M, Maurice D (1987) The rate of diffusion of fluorophores through the corneal epithelium and stroma. Exp Eye Res 44:73–87PubMedCrossRefGoogle Scholar
  4. Berkowitz RA, Klyce SD, Salisbury JD, Kaufman HE (1981) Fluorophotometric determination of the corneal epithelial barrier after penetrating keratoplasty. Am J Ophthalmol 92:332–335PubMedGoogle Scholar
  5. Boets EP, van Best JA, Boot JP, Oosterhuis JA (1988) Corneal epithelial permeability and daily contact lens wear as determined by fluorophotometry. Curr Eye Res 7:511–514PubMedCrossRefGoogle Scholar
  6. Bron AJ (1985) Prospects for the dry eye. Trans Am Ophthalmol Soc 104:801–811Google Scholar
  7. Burstein NL (1980) Preservative cytotoxic threshold for benzalkonium chloride and chlorhexidine in cat and rabbit corneas. Invest Ophthalmol Vis Sci 19:308–813PubMedGoogle Scholar
  8. Burstein NL (1984) Preservative alteration of corneal permeability in humans and rabbits. Invest Ophthalmol Vis Sci 25:1453–1457PubMedGoogle Scholar
  9. Burstein NL, Klyce SD (1977) Electrophysiologic and morphologic effects of ophthalmic preparations on rabbit cornea epithelium. Invest Ophthalmol Vis Sci 16:899–911PubMedGoogle Scholar
  10. Cadwallader DE, Ansel HC (1965) Hemolysis of erythrocytes by antibacterial preservatives. II. Quarternary ammonium salts. J Pharm Sci 54:1010–1012PubMedCrossRefGoogle Scholar
  11. Champeau EJ, Edelhauser HF (1986) Effects of ophthalmic preservatives on the ocular surface: conjunctiva and corneal uptake and distribution of benzalkonium chloride and chlorhexidine digluconate. In: Holly FJ (ed) The preocular tear film: in health, disease, and contact lens wear. Dry Eye Institute, Lubbock, TX, pp 292–302Google Scholar
  12. Chang SW, Hu FR (1993) Changes in corneal autofluorescence and corneal epithelial barrier function with aging. Cornea 12:493–499PubMedCrossRefGoogle Scholar
  13. Chang SW, Hsu HC, Hu FR, Chen MS (1995) Corneal autofluorescence and epithelial barrier function in diabetic patients. Ophthalmic Res 27:74–79PubMedCrossRefGoogle Scholar
  14. Cunha-Vaz J, de Abreu J, Campos A (1975) Early breakdown of the blood-retinal barrier in diabetes. Br J Ophthalmol 59:649–656PubMedCrossRefGoogle Scholar
  15. de Kruijf EJ, Boot JP, Laterveer L, van Best JA, Ramselaar JA, Oosterhuis JA (1987) A simple method for determination of corneal epithelial permeability in humans. Curr Eye Res 6:1327–1334PubMedCrossRefGoogle Scholar
  16. Forster S, Mead A, Sears M (1979) An interophthalmic communicating artery as explanation for the consensual irritative response of the rabbit eye. Invest Ophthalmol Vis Sci 18:161–165PubMedGoogle Scholar
  17. Gobbels M, Spitznas M (1991) Effects of artificial tears on corneal epithelial permeability in dry eyes. Graefes Arch Clin Exp Ophthalmol 229:345–349PubMedCrossRefGoogle Scholar
  18. Gobbels M, Spitznas M (1992) Corneal epithelial permeability of dry eyes before and after treatment with artificial tears. Ophthalmology 99:873–878PubMedGoogle Scholar
  19. Gobbels M, Spitznas M, Oldendoerp J (1989) Impairment of corneal epithelial barrier function in diabetics. Graefes Arch Clin Exp Ophthalmol 227:142–144PubMedCrossRefGoogle Scholar
  20. Gobbles M, Spitznas M (1989) Influence of artificial tears on corneal epithelium in dry eye syndrome. Graefes Arch Clin Exp Ophthalmol 227:139–141CrossRefGoogle Scholar
  21. Gray JR, Mosier MA, Ishimoto BM (1985) Optimized protocol for Fluorotron Master. Graefes Arch Clin Exp Ophthalmol 222:225–229PubMedCrossRefGoogle Scholar
  22. Grimes PA, Stone RA, Laties AM, Li W (1982) Carboxyfluorescein. A probe of the blood ocular barriers with lower membrane permeability than fluorescein. Arch Ophthalmol 100:635–639PubMedGoogle Scholar
  23. Hughes L, Maurice D (1984) A fresh look at iontophoresis. Arch Ophthalmol 102:1825–1829PubMedGoogle Scholar
  24. Jones RF, Maurice DM (1966) New methods of measuring the rate of aqueous flow on man with fluorescein. Exp Eye Res 5:208–220PubMedCrossRefGoogle Scholar
  25. Joshi A, Maurice D, Paugh JR (1996) A new method for determining corneal epithelial barrier to fluorescein in humans. Invest Ophthalmol Vis Sci 37:1008–1016PubMedGoogle Scholar
  26. Kanno Y, Loewenstein WR (1964) Intercellular diffusion. Science 143:959–960PubMedCrossRefGoogle Scholar
  27. Kuppens EVM, Stolwijk TR, de Keizer RJW, van Best JA (1992) Basal tear turnover and topical timolol in glaucoma patients and healthy controls by fluorophotometry. Invest Ophthalmol Vis Sci 33:3442–3448PubMedGoogle Scholar
  28. Kuppens E, Stolwijk T, van Best J, de Keizer R (1994) Topical timolol, corneal epithelial permeability and autofluorescence in glaucoma by fluorophotometry. Graefes Arch Clin Exp Ophthalmol 232:215–220PubMedCrossRefGoogle Scholar
  29. Lin MC, Graham AD, Fusaro RE, Polse KA (2002) Impact of rigid gas-permeable contact lens extended wear on corneal epithelial barrier function. Invest Ophthalmol Vis Sci 43:1019–1024PubMedGoogle Scholar
  30. Maurice D (1963) A new objective fluorophotometer. Exp Eye Res 2:33–38PubMedGoogle Scholar
  31. McCarey BE (2010) Injections final with title. Presentation grant/NIH R-24 grant: copy and pasteGoogle Scholar
  32. McCarey BE, al Reaves T (1995) Noninvasive measurement of corneal epithelial permeability. Curr Eye Res 14:505–510PubMedCrossRefGoogle Scholar
  33. McCarey BE, Reaves TA (1997) Effect of tear lubricating solutions on in vivo corneal epithelial permeability. Curr Eye Res 16:44–50PubMedCrossRefGoogle Scholar
  34. McCarey BE, Walter JJ (1998) Ocular fluorophotometry of fluorescein uptake following periorbital injections. Invest Ophthalmol Vis Sci 39:S275Google Scholar
  35. McNamara NA, Fusaro RE, Brand RJ, Polse KA, Srinivas SP (1997) Measurement of corneal epithelial permeability to fluorescein. A repeatability study. Invest Ophthalmol Vis Sci 38:1830–1839PubMedGoogle Scholar
  36. McNamara NA, Polse KA, Bonanno JA (1998) Fluorophotometry in contact lens research: the next step. Optom Vis Sci 75:316–322PubMedCrossRefGoogle Scholar
  37. Mishima S, Maurice DM (1971) In vivo determination of the endothelial permeability to fluorescein. Acta Soc Ophthalmol 75:236–243Google Scholar
  38. Nelson JD (1995) Simultaneous evaluation of tear turnover and corneal epithelial permeability by fluorophotometry in normal subjects and patients with keratoconjunctivitis sicca (KCS). Trans Am Ophthalmol Soc 93:709–753PubMedGoogle Scholar
  39. Occhipiniti JR, Mosier MA, La Motte J, Monji GT (1988) Fluorophotometric measurement of human tear turnover rate. Curr Eye Res 7:995–1000CrossRefGoogle Scholar
  40. OcuMetrics I (1995) FM-2 Fluorotron™ Master, Operators Manual, OcuMetrics, Inc., 2224-C Old Middlefield Way, Mountain View, CA 94043-2421, 650:960–3955Google Scholar
  41. Ota Y, Mishima S, Maurice DM (1974) Endothelial permeability of the living cornea to fluorescein. Invest Ophthalmol Vis Sci 13:945–949Google Scholar
  42. Paugh JR, Joshi A (1992) Novel fluorophotometric methods to evaluate tear flow dynamics in man. Invest Ophthalmol Vis Sci 33:S950Google Scholar
  43. Paugh JR, Saai A, Abhay J (1998) Preservative effect on epithelial barrier function measured with a novel technique. Adv Exp Med Biol 438:731–735PubMedGoogle Scholar
  44. Pfister RR, Burstein NL (1976) The effects of ophthalmic drugs, vehicles, and preservatives on corneal epithelium: a scanning electron microscope study. Invest Ophthalmol Vis Sci 15:246–259Google Scholar
  45. Ramselaar JA, Boot JP, van Haeringen NJ, van Best JA, Oosterhuis JA (1988) Corneal epithelial permeability after instillation of ophthalmic solutions containing local anesthetics and preservatives. Curr Eye Res 7:947–950PubMedCrossRefGoogle Scholar
  46. Schalnus R, Ohrloff C (1990) Permeability of the limiting cell layers of the cornea in vivo. Lens Eye Toxic Res 7:371–384PubMedGoogle Scholar
  47. Tognetto D, Cecchini P, Sanguinetti G, Pedio M, Ravalico G (2001) Comparative evaluation of corneal epithelial permeability after the use of diclofenac 0.1% and flurbiprofen 0.03% after phacoemulsification. J Cataract Refract Surg 27:1392–1396PubMedCrossRefGoogle Scholar
  48. Tsuboti S, Pedersen JE (1987) Acetazolamide effect on the inward permeability of the blood-retina barrier in diabetes. Invest Ophthalmol Vis Sci 28:92–95Google Scholar
  49. van Best J, Tijin A, Tsoi EWSJ, Boets EP, Oosterhuis JA (1985) In vivo assessment of lens transmission for blue-green light by autofluorescence measurement. Ophthalmic Res 17:90–95PubMedCrossRefGoogle Scholar
  50. van Best JA, Kappelhof JP, Laterveer L, Oosterhuis JA (1987) Blood aqueous barrier permeability verses age by fluorophotometry. Curr Eye Res 6:855–863PubMedCrossRefGoogle Scholar
  51. van Zutphen H, Demel RA, Norman AW, van Deenen LLM (1971) The action of polyene antibiotics on lipid bilayer membranes in the presence of several cations and anions. Biochim Biophys Acta 241:310–330PubMedCrossRefGoogle Scholar
  52. Webber W, Jones DP, Wright P (1987) Fluorophotometric measurements of tear turnover rate in normal healthy persons: evidence for a circadian rhythm. Eye 1:615–620PubMedCrossRefGoogle Scholar
  53. Yokoi K, Yokoi N, Kinoshita S (1998) Impairment of ocular surface epithelium barrier function in patients with atopic dermatitis. Br J Ophthalmol 82:797–800PubMedCrossRefGoogle Scholar
  54. Zeimer RC, Cunha-Vaz JG, Johnson ME (1982) Studies on the technique of vitreous fluorophotometry. Invest Ophthalmol Vis Sci 22:668–674PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2011

Authors and Affiliations

  1. 1.Emory University School of Medicine, Eye CenterAtlantaUSA

Personalised recommendations