Skip to main content

Fluorophotometry for Pharmacokinetic Assessment

  • Chapter
  • First Online:

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 2))

Abstract

The corneal epithelium provides a semi-impermeable barrier between the eye and the environment. With continuous intercellular tight junctions, the corneal epithelium exerts a high resistance to passage of ions. Fluorescein staining of the corneal epithelium and stroma has been a subjective measure of the quality of the epithelial barrier. Maurice (1963) was an early pioneer in devising a slit lamp-based instrument to quantify the fluorescein in the cornea of human subjects. Cunha-Vaz (Br J Ophthalmol 59:649-656, 1975) expanded the technology to perform multiple measures of fluorescein concentration as the instrument’s focal plane moved through the eye. Since these early instruments, several commercial fluorophotometers have become available with application to drug delivery of fluorescent tracers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adler CA, Maurice DM, Paterson ME (1971) The effect of viscosity of the vehicle on the penetration of fluorescein into the human eye. Exp Eye Res 11:34–42

    Article  PubMed  CAS  Google Scholar 

  • Araie M (1986) Carboxyfluorescein. A dye for evaluating the corneal endothelial barrier function in vivo. Exp Eye Res 42:141–150

    Article  PubMed  CAS  Google Scholar 

  • Araie M, Maurice D (1987) The rate of diffusion of fluorophores through the corneal epithelium and stroma. Exp Eye Res 44:73–87

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz RA, Klyce SD, Salisbury JD, Kaufman HE (1981) Fluorophotometric determination of the corneal epithelial barrier after penetrating keratoplasty. Am J Ophthalmol 92:332–335

    PubMed  CAS  Google Scholar 

  • Boets EP, van Best JA, Boot JP, Oosterhuis JA (1988) Corneal epithelial permeability and daily contact lens wear as determined by fluorophotometry. Curr Eye Res 7:511–514

    Article  PubMed  CAS  Google Scholar 

  • Bron AJ (1985) Prospects for the dry eye. Trans Am Ophthalmol Soc 104:801–811

    Google Scholar 

  • Burstein NL (1980) Preservative cytotoxic threshold for benzalkonium chloride and chlorhexidine in cat and rabbit corneas. Invest Ophthalmol Vis Sci 19:308–813

    PubMed  CAS  Google Scholar 

  • Burstein NL (1984) Preservative alteration of corneal permeability in humans and rabbits. Invest Ophthalmol Vis Sci 25:1453–1457

    PubMed  CAS  Google Scholar 

  • Burstein NL, Klyce SD (1977) Electrophysiologic and morphologic effects of ophthalmic preparations on rabbit cornea epithelium. Invest Ophthalmol Vis Sci 16:899–911

    PubMed  CAS  Google Scholar 

  • Cadwallader DE, Ansel HC (1965) Hemolysis of erythrocytes by antibacterial preservatives. II. Quarternary ammonium salts. J Pharm Sci 54:1010–1012

    Article  PubMed  CAS  Google Scholar 

  • Champeau EJ, Edelhauser HF (1986) Effects of ophthalmic preservatives on the ocular surface: conjunctiva and corneal uptake and distribution of benzalkonium chloride and chlorhexidine digluconate. In: Holly FJ (ed) The preocular tear film: in health, disease, and contact lens wear. Dry Eye Institute, Lubbock, TX, pp 292–302

    Google Scholar 

  • Chang SW, Hu FR (1993) Changes in corneal autofluorescence and corneal epithelial barrier function with aging. Cornea 12:493–499

    Article  PubMed  CAS  Google Scholar 

  • Chang SW, Hsu HC, Hu FR, Chen MS (1995) Corneal autofluorescence and epithelial barrier function in diabetic patients. Ophthalmic Res 27:74–79

    Article  PubMed  CAS  Google Scholar 

  • Cunha-Vaz J, de Abreu J, Campos A (1975) Early breakdown of the blood-retinal barrier in diabetes. Br J Ophthalmol 59:649–656

    Article  PubMed  CAS  Google Scholar 

  • de Kruijf EJ, Boot JP, Laterveer L, van Best JA, Ramselaar JA, Oosterhuis JA (1987) A simple method for determination of corneal epithelial permeability in humans. Curr Eye Res 6:1327–1334

    Article  PubMed  Google Scholar 

  • Forster S, Mead A, Sears M (1979) An interophthalmic communicating artery as explanation for the consensual irritative response of the rabbit eye. Invest Ophthalmol Vis Sci 18:161–165

    PubMed  CAS  Google Scholar 

  • Gobbels M, Spitznas M (1991) Effects of artificial tears on corneal epithelial permeability in dry eyes. Graefes Arch Clin Exp Ophthalmol 229:345–349

    Article  PubMed  CAS  Google Scholar 

  • Gobbels M, Spitznas M (1992) Corneal epithelial permeability of dry eyes before and after treatment with artificial tears. Ophthalmology 99:873–878

    PubMed  CAS  Google Scholar 

  • Gobbels M, Spitznas M, Oldendoerp J (1989) Impairment of corneal epithelial barrier function in diabetics. Graefes Arch Clin Exp Ophthalmol 227:142–144

    Article  PubMed  CAS  Google Scholar 

  • Gobbles M, Spitznas M (1989) Influence of artificial tears on corneal epithelium in dry eye syndrome. Graefes Arch Clin Exp Ophthalmol 227:139–141

    Article  Google Scholar 

  • Gray JR, Mosier MA, Ishimoto BM (1985) Optimized protocol for Fluorotron Master. Graefes Arch Clin Exp Ophthalmol 222:225–229

    Article  PubMed  CAS  Google Scholar 

  • Grimes PA, Stone RA, Laties AM, Li W (1982) Carboxyfluorescein. A probe of the blood ocular barriers with lower membrane permeability than fluorescein. Arch Ophthalmol 100:635–639

    PubMed  CAS  Google Scholar 

  • Hughes L, Maurice D (1984) A fresh look at iontophoresis. Arch Ophthalmol 102:1825–1829

    PubMed  CAS  Google Scholar 

  • Jones RF, Maurice DM (1966) New methods of measuring the rate of aqueous flow on man with fluorescein. Exp Eye Res 5:208–220

    Article  PubMed  CAS  Google Scholar 

  • Joshi A, Maurice D, Paugh JR (1996) A new method for determining corneal epithelial barrier to fluorescein in humans. Invest Ophthalmol Vis Sci 37:1008–1016

    PubMed  CAS  Google Scholar 

  • Kanno Y, Loewenstein WR (1964) Intercellular diffusion. Science 143:959–960

    Article  PubMed  CAS  Google Scholar 

  • Kuppens EVM, Stolwijk TR, de Keizer RJW, van Best JA (1992) Basal tear turnover and topical timolol in glaucoma patients and healthy controls by fluorophotometry. Invest Ophthalmol Vis Sci 33:3442–3448

    PubMed  CAS  Google Scholar 

  • Kuppens E, Stolwijk T, van Best J, de Keizer R (1994) Topical timolol, corneal epithelial permeability and autofluorescence in glaucoma by fluorophotometry. Graefes Arch Clin Exp Ophthalmol 232:215–220

    Article  PubMed  CAS  Google Scholar 

  • Lin MC, Graham AD, Fusaro RE, Polse KA (2002) Impact of rigid gas-permeable contact lens extended wear on corneal epithelial barrier function. Invest Ophthalmol Vis Sci 43:1019–1024

    PubMed  Google Scholar 

  • Maurice D (1963) A new objective fluorophotometer. Exp Eye Res 2:33–38

    PubMed  Google Scholar 

  • McCarey BE (2010) Injections final with title. Presentation grant/NIH R-24 grant: copy and paste

    Google Scholar 

  • McCarey BE, al Reaves T (1995) Noninvasive measurement of corneal epithelial permeability. Curr Eye Res 14:505–510

    Article  PubMed  CAS  Google Scholar 

  • McCarey BE, Reaves TA (1997) Effect of tear lubricating solutions on in vivo corneal epithelial permeability. Curr Eye Res 16:44–50

    Article  PubMed  CAS  Google Scholar 

  • McCarey BE, Walter JJ (1998) Ocular fluorophotometry of fluorescein uptake following periorbital injections. Invest Ophthalmol Vis Sci 39:S275

    Google Scholar 

  • McNamara NA, Fusaro RE, Brand RJ, Polse KA, Srinivas SP (1997) Measurement of corneal epithelial permeability to fluorescein. A repeatability study. Invest Ophthalmol Vis Sci 38:1830–1839

    PubMed  CAS  Google Scholar 

  • McNamara NA, Polse KA, Bonanno JA (1998) Fluorophotometry in contact lens research: the next step. Optom Vis Sci 75:316–322

    Article  PubMed  CAS  Google Scholar 

  • Mishima S, Maurice DM (1971) In vivo determination of the endothelial permeability to fluorescein. Acta Soc Ophthalmol 75:236–243

    CAS  Google Scholar 

  • Nelson JD (1995) Simultaneous evaluation of tear turnover and corneal epithelial permeability by fluorophotometry in normal subjects and patients with keratoconjunctivitis sicca (KCS). Trans Am Ophthalmol Soc 93:709–753

    PubMed  CAS  Google Scholar 

  • Occhipiniti JR, Mosier MA, La Motte J, Monji GT (1988) Fluorophotometric measurement of human tear turnover rate. Curr Eye Res 7:995–1000

    Article  Google Scholar 

  • OcuMetrics I (1995) FM-2 Fluorotron™ Master, Operators Manual, OcuMetrics, Inc., 2224-C Old Middlefield Way, Mountain View, CA 94043-2421, 650:960–3955

    Google Scholar 

  • Ota Y, Mishima S, Maurice DM (1974) Endothelial permeability of the living cornea to fluorescein. Invest Ophthalmol Vis Sci 13:945–949

    CAS  Google Scholar 

  • Paugh JR, Joshi A (1992) Novel fluorophotometric methods to evaluate tear flow dynamics in man. Invest Ophthalmol Vis Sci 33:S950

    Google Scholar 

  • Paugh JR, Saai A, Abhay J (1998) Preservative effect on epithelial barrier function measured with a novel technique. Adv Exp Med Biol 438:731–735

    PubMed  CAS  Google Scholar 

  • Pfister RR, Burstein NL (1976) The effects of ophthalmic drugs, vehicles, and preservatives on corneal epithelium: a scanning electron microscope study. Invest Ophthalmol Vis Sci 15:246–259

    CAS  Google Scholar 

  • Ramselaar JA, Boot JP, van Haeringen NJ, van Best JA, Oosterhuis JA (1988) Corneal epithelial permeability after instillation of ophthalmic solutions containing local anesthetics and preservatives. Curr Eye Res 7:947–950

    Article  PubMed  CAS  Google Scholar 

  • Schalnus R, Ohrloff C (1990) Permeability of the limiting cell layers of the cornea in vivo. Lens Eye Toxic Res 7:371–384

    PubMed  CAS  Google Scholar 

  • Tognetto D, Cecchini P, Sanguinetti G, Pedio M, Ravalico G (2001) Comparative evaluation of corneal epithelial permeability after the use of diclofenac 0.1% and flurbiprofen 0.03% after phacoemulsification. J Cataract Refract Surg 27:1392–1396

    Article  PubMed  CAS  Google Scholar 

  • Tsuboti S, Pedersen JE (1987) Acetazolamide effect on the inward permeability of the blood-retina barrier in diabetes. Invest Ophthalmol Vis Sci 28:92–95

    Google Scholar 

  • van Best J, Tijin A, Tsoi EWSJ, Boets EP, Oosterhuis JA (1985) In vivo assessment of lens transmission for blue-green light by autofluorescence measurement. Ophthalmic Res 17:90–95

    Article  PubMed  Google Scholar 

  • van Best JA, Kappelhof JP, Laterveer L, Oosterhuis JA (1987) Blood aqueous barrier permeability verses age by fluorophotometry. Curr Eye Res 6:855–863

    Article  PubMed  Google Scholar 

  • van Zutphen H, Demel RA, Norman AW, van Deenen LLM (1971) The action of polyene antibiotics on lipid bilayer membranes in the presence of several cations and anions. Biochim Biophys Acta 241:310–330

    Article  PubMed  Google Scholar 

  • Webber W, Jones DP, Wright P (1987) Fluorophotometric measurements of tear turnover rate in normal healthy persons: evidence for a circadian rhythm. Eye 1:615–620

    Article  PubMed  Google Scholar 

  • Yokoi K, Yokoi N, Kinoshita S (1998) Impairment of ocular surface epithelium barrier function in patients with atopic dermatitis. Br J Ophthalmol 82:797–800

    Article  PubMed  CAS  Google Scholar 

  • Zeimer RC, Cunha-Vaz JG, Johnson ME (1982) Studies on the technique of vitreous fluorophotometry. Invest Ophthalmol Vis Sci 22:668–674

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard E. McCarey PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

McCarey, B.E. (2011). Fluorophotometry for Pharmacokinetic Assessment. In: Kompella, U., Edelhauser, H. (eds) Drug Product Development for the Back of the Eye. AAPS Advances in the Pharmaceutical Sciences Series, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9920-7_3

Download citation

Publish with us

Policies and ethics