Refillable Devices for Therapy of Ophthalmic Diseases

  • Alan L. Weiner
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 2)


As a subset of ophthalmic drug delivery systems, refillable approaches encompass a relatively new but growing field of study. This review will cover general design considerations in the development of refill devices for the eye. This will include acceptability of administration sites, body and injection port design, influences of vacuum and pressure, flushing and fluid replacement for active, passive and solid delivery devices, and potential for contamination. Historical influences leading to the current design concepts such as development of parenteral infusion pumps, glaucoma drainage devices, and pioneering ocular experiments will be discussed. Finally, specific studies and designs on refillable systems that have been proposed to deliver agents either to the vitreous through the pars plana, via trans-scleral delivery from episcleral implantation, to subretinal or suprachoroidal spaces from anterior location or to the anterior or posterior chambers from the lens capsule will be presented.


Lens Capsule Device Location Polyethylene Vinyl Acetate Glaucoma Drainage Device Suprachoroidal Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adamis AP, Miller JW, Mescher MJ, Gragoudas ES, Borenstein JT (2004) Transscleral drug delivery device and related methods. Patent Cooperation Treaty International Publication Number WO 2004/073551 A2Google Scholar
  2. Adler N (1964) Use of self-sealing elastomer septums for quantitative operations with volatile solvents. Anal Chem 36(12):2291–2295CrossRefGoogle Scholar
  3. Ashton P, Patchell RA, Cooper J, Young BA (1998) Implantable refillable controlled release device to deliver drugs directly to an internal portion of the body. US Patent 5,836,935Google Scholar
  4. Avery RL (2006) Implantable delivery device for administering pharmacological agents to an internal portion of a body. US Patent Application 20060258994 A1Google Scholar
  5. Avery RL, Luttrull JK (1998) Intravitreal medicine delivery. US Patent 5,830,173Google Scholar
  6. Avery RL, Saati S, Journey M, Caffey S, Varma R, Tai Y-C, Humayun MS (2010) A novel implantable refillable pump for intraocular drug delivery. Invest Ophthalmol Vis Sci 51, ARVO 2010 annual meeting, E-Abs 3799Google Scholar
  7. Bishop CJ, Sant HJ, Molokhia SA, Burr RM, Gale BK, Ambati BK (2010) Designing and manufacturing a refillable multi-drug capsule ring platform. Inv Ophthalmol Vis Sci 51, ARVO 2010 annual meeting, E-Abs A259Google Scholar
  8. Buchwald H, Grage TB, Vassilopoulos PP, Rohde TD, Varco RL, Blackshear PJ (1980) Intraarterial infusion chemotherapy for hepatic carcinoma using a totally implantable infusion pump. Cancer 45(5):866–869PubMedCrossRefGoogle Scholar
  9. Cohen AM, Wood WC, Greenfield A, Waltman A, Dedrick C, Blackshear PJ (1980) Transbrachial hepatic arterial chemotherapy using an implanted infusion pump. Dis Colon Rectum 23(4):223–227PubMedCrossRefGoogle Scholar
  10. Cohen AM, Greenfield A, Wood WC, Waltman A, Novelline R, Athanasoulis C, Schaeffer NJ (1983a) Treatment of hepatic metastases by transaxillary hepatic artery chemotherapy using an implanted drug pump. Cancer 51(11):2013–2019PubMedCrossRefGoogle Scholar
  11. Cohen AM, Kaufman SD, Wood WC, Greenfield AJ (1983b) Regional hepatic chemotherapy using an implantable drug infusion pump. Am J Surg 145(4):529–533PubMedCrossRefGoogle Scholar
  12. Dahlin DC, Trawick D, Zilliox P, Robertson SM, Sanders M, Struble C, Clark AF (2003) Design of a specialized cannula for posterior juxtascleral delivery of anecortave acetate to the retina for treatment CNV associated with age-related macular degeneration (AMD). Invest Ophthalmol Vis Sci 4, E-Abs 5036Google Scholar
  13. Dalton MJ (1989) Matrix septum. US Patent 4,857,053Google Scholar
  14. Dario A, Scamoni C, Picano M, Fortini G, Cuffari S, Tomei G (2005) The infection risk of intrathecal drug infusion pumps after multiple refill procedures. Neuromodulation 8(1):36–39CrossRefGoogle Scholar
  15. De Carvalho RAP, Krause ML, Murphree AL, Schmitt EE, Campochiaro PA, Maumenee IH (2006) Delivery from episcleral exoplants. Inv Ophthalmol Vis Sci 47:4532–4539CrossRefGoogle Scholar
  16. DeCarvalho RAP, Murphree AL, Schmitt EE (2003) Implantable and sealable system for unidirectional delivery of therapeutic agents to tissues. US Patent Application 2003/0064088 A1 and PCT WO 03/020172Google Scholar
  17. DeCarvalho RAP, Krause ML, e Silva RL, Maumenee IH, Campochiaro P (2005) Transscleral diffusion patterns and intraocular tracer kinetics of sealable and refillable episcleral drug delivery systems. Inv Ophthalmol Vis Sci 46, E-Abs 3532Google Scholar
  18. Dinius HB, Huizenga JR (1984) Implant system. US Patent 4,451,254Google Scholar
  19. Doan P, Nettecoven WS (1992) Drug administration device over full protection valve. US Patent 5,158,547Google Scholar
  20. Franklin A (2007) Trans-scleral drug delivery method and apparatus. US Patent 7,276,050 B2Google Scholar
  21. Ginggen A (2009) Implantable pump with integrated refill detection. US Patent 7,637,897 B2Google Scholar
  22. Greenberg R (2009) Implantable drug delivery device. US Patent 7,527,621 A1 and US Patent Application 2002/0188282 A1Google Scholar
  23. Humayan M, De Juan E (2006) Reservoirs with subretinal cannula for subretinal drug delivery. US Patent Publication 2006/0200097 A1Google Scholar
  24. Krause M, e Silva RL, Maumenee IH, Campochiaro P, Schmitt EE, Murphree AL, de Carvalho RAP (2005) Characterization and validation of refillable episcleral drug delivery devices for unidirectional and controlled transscleral drug delivery. Inv Ophthalmol Vis Sci 46, E-Abs 499Google Scholar
  25. Levy R (1997) Implanted drug delivery systems for control of pain. Chapter 19. Neurosurgical management of pain. Springer, New YorkGoogle Scholar
  26. Levy A (2004) Self resealing elastomeric closure. US Patent 6,752,965 B2Google Scholar
  27. Li P-Y, Shih J, Lo R, Saati S, Agrawal R, Humayun MS, Tai Y-C, Meng E (2008) An electrochemical intraocular drug delivery device. Sens Actuators A 143:41–48CrossRefGoogle Scholar
  28. Lim KS, Allan BDS, Lloyd AW, Muir A, Khaw PT (1998) Glaucoma drainage devices; past, present and future. Br J Ophthalmol 82:1083–1089PubMedCrossRefGoogle Scholar
  29. Liu HS, Refojo MF, Perry HD, Albert DM (1979) Sustained release of BCNU for the treatment of intraocular malignancies in animal models. Invest Ophthalmol Vis Sci 18:1061–1067PubMedGoogle Scholar
  30. Liu LHS, Refojo MF, Ni C, Ueno N, Albert DM (1983) Sustained release of carmustine (BCNU) for treatment of experimental intraocular malignancy. Br J Ophthalmol 67:479–484PubMedCrossRefGoogle Scholar
  31. Lo R, Li P-Y, Saati S, Agrawal RN, Humayun MS, Meng E (2009) A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed Microdevices 11:959–970CrossRefGoogle Scholar
  32. Meng E, Humayun M, Lo R, Li P-Y, Saati S (2009) Implantable drug-delivery devices and apparatus and methods for refilling the devices. US Patent Application 20090192493Google Scholar
  33. Molokhia SA, Sant HJ, Hanson MC, Burr RM, Poursaid AE, Bishop CJ, Simonis JM, Gale BK, Ambati BK (2009) New intraocular drug delivery device. Inv Ophthalmol Vis Sci 50, ARVO 2009 annual meeting, E-Abs A597Google Scholar
  34. Molokhia SA, Sant H, Simonis J, Bishop CJ, Burr RM, Gale BK, Ambati BK (2010a) The capsule drug device: novel approach for drug delivery to the eye. Vis Res 50(7):680–685PubMedCrossRefGoogle Scholar
  35. Molokhia SA, Burr RM, Sant HJ, Simonis JM, Gale BK, Ambati BK (2010b) In vivo pharmacokinetics of a new intraocular drug delivery device. Inv Ophthalmol Vis Sci 51, ARVO 2010 annual meeting, E-Abs A256Google Scholar
  36. Molteno ACB (1969) New implant for drainage in glaucoma. Animal trial. Br J Ophthalmol 53:161–168PubMedCrossRefGoogle Scholar
  37. Muller H, Aigner K, Worm I, Lobisch M, Brahler A, Hempelmann G (1984) Long term experiences with continuous peridural opiate analgesia with an implanted pump. Anaesthesist 33(9):433–439PubMedGoogle Scholar
  38. Olsen JM (2000) Overfill protection systems for implantable drug delivery devices. US Patent 6,152,898Google Scholar
  39. Olsen TW, Feng X, Wabner K, Conston SR, Sierra DH, Folden DV, Smith ME, Cameron JD (2006) Cannulation of the suprachoroidal space:  a novel drug delivery methodology to the posterior segment. Am J Ophthalmol 142(5):777–787PubMedCrossRefGoogle Scholar
  40. Pang C, Jiang F, Shih J, Caffey S, Humayun M, Tai Y-C (2010) Drug-delivery pumps and methods of manufacture. US Patent Application 20100004639Google Scholar
  41. Peyman GA (2005) Ocular drug delivery. US Patent Publication 2005/0181018 A1Google Scholar
  42. Phillips TW, Chandler WF, Kindt GW, Ensminger WD, Greenberg HS, Seeger JF, Doan KM, Gyves JW (1982) New implantable continuous administration and bolus dose intracarotid drug delivery system for the treatment of malignant gliomas. Neurosurgery 11(2):213–218PubMedCrossRefGoogle Scholar
  43. Prestele K, Funke H, Moschi R, Reif E, Franetzki M (1983) Development of remotely controlled implantable devices for programmed insulin infusion. Life Support Syst 1(1):23–38PubMedGoogle Scholar
  44. Refojo MF, Liu HS (1981) Method for treating intraocular malignancies. US Patent 4,300,557Google Scholar
  45. Refojo MF, Liu HS, Leong FL, Sidebottom D (1978) Release of a nitrosourea derivative from refillable silicone rubber implants for the treatment of intraocular malignancies. J Bioeng 2(5):437–445PubMedGoogle Scholar
  46. Renard E, Rostane T, Carriere C, Marchandin H, Jacques-Apostol D, Lauton D, Gibert-Boulet F, Bringer J (2001) Implantable insulin pumps: infections most likely due to seeding from skin flora determine severe outcomes of pump-pocket seromas. Diabetes Metab 27(1):62–65PubMedGoogle Scholar
  47. Roorda WE (2001) Refillable implantable drug delivery pump. US Patent 6,283,949 B1Google Scholar
  48. Saati S, Lo R, Li P-Y, Meng E, Varma R, Humayun MS (2009) Mini drug pump for ophthalmic use. Trans Am Ophthalmol Soc 107:60–70. Subsequently reviewed, modified and re-published in 2010 Curr Eye Res 35(3):192–201Google Scholar
  49. Sassa R, Dove K, Cooper S (2009) Barrier with low extractables and resealing properties. US Patent Application 20090196798 A1Google Scholar
  50. Selam JL, Slingeneyer A, Chaptal PA, Franetzki M, Prestele K, Mirouze J (1982) Total implantation of a remotely controlled insulin minipumps in a human insulin dependant diabetic. Artif Organs 6(3):315–319PubMedCrossRefGoogle Scholar
  51. Setabutr P, Bell NP, Feldman RM (2006) Intraoperative management of non-functioning Ahmed glaucoma valve implant. Ophthal Surg Lasers Imaging 37:62–64Google Scholar
  52. Slakter JS, Singerman LJ, Yannuzzi LA, Russell SR, Hudson HL, Jerdan J, Zilliox P, Robertson SM (2002) Sub-Tenon’s administration of the angiostatic agent anecortave acetate in AMD patients with subfoveal choroidal neovascularization (CNV) – the clinical outcome. Invest Ophthalmol Vis Sci 43, E-Abs 2909Google Scholar
  53. Varner SE, DeJuan E Jr, Shelley T, Barnes AC, Cooney MJ, Shelley TH (2002) Reservoir device for intraocular drug delivery. Patent Cooperation Treaty (PCT) International Publication No WO 02/100318Google Scholar
  54. Varner SE, DeJuan E Jr, Shelley T, Barnes AC, Humayun M (2004) Devices for intraocular drug delivery. US Patent 6,7196750 B2Google Scholar
  55. Watson DA, Shimizu RW, LaPorte R (2005) Implantable refillable and ported controlled release drug delivery device. US Patent 6,852,106 B2Google Scholar
  56. Weiner AL (2007) Drug delivery systems in ophthalmic applications. In: Yorio T, Clark A, Wax M (eds) Ocular therapeutics; eye on new discoveries. Academic, New York, pp 7–43Google Scholar
  57. Weiner AL, Sinnett K, Johnson S (1995) Tack for intraocular drug delivery and method for inserting and removing the same. US Patent 5,466,233Google Scholar
  58. Wong VG, Hu MWL, Berger DE Jr (2001) Controlled-release biocompatible ocular drug delivery implant devices and methods. US Patent 6,331,313 B1Google Scholar
  59. Yaacobi Y (2002) Ophthalmic drug delivery device. US Patent 6,416,777 B1Google Scholar
  60. Yaacobi Y (2006a) Ophthalmic drug delivery device. US Patent 6,986,900 B2Google Scholar
  61. Yaacobi Y (2006b) Ophthalmic drug delivery device. US Patent 7,094,226 B2Google Scholar
  62. Yaacobi Y, Chastain J, Lowseth L, Bhatia R, Slovin E, Rodstrom R, Stevens L, Dahlin D, Marsh D (2003) In-vivo studies with trans-scleral anecortave acetate delivery device designed to treat Choroidal neovascularization in AMD. Invest Ophthalmol Vis Sci 44, E-Abs 4210Google Scholar
  63. Yamamoto R, Conston SR, Sierra D (2007) Apparatus and formulations for suprachoroidal drug delivery. US Patent Publication 2007/0202186 A1Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2011

Authors and Affiliations

  1. 1.DrugDel Consulting, LLCArlingtonUSA

Personalised recommendations