Skip to main content

Hydrogels for Ocular Posterior Segment Drug Delivery

  • Chapter
  • First Online:
Drug Product Development for the Back of the Eye

Abstract

This chapter discusses emerging hydrogel technology for drug delivery to the back of the eye to treat retinal diseases. The review includes design, characterization and optimization of hydrogels, and advantages and disadvantages of intravitreally and subconjunctivally administrated hydrogels for retinal therapy. Future direction of hydrogel technology for targeted and sustained delivery of drugs to the retina for individualized medicine is also laid out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Kassas RS, El-Khatib MM (2009) Ophthalmic controlled release in situ gelling systems for ciprofloxacin based on polymeric carriers. Drug Deliv 16:145–152

    Article  PubMed  CAS  Google Scholar 

  • Allergan (2009) Allergan receives FDA approval forOZURDEXâ„¢ biodegradable, injectable steroid implant with extended drug release for retinal disease. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.DrugDetails. Accessed 4 July 2011

  • Alvarez-Lorenzo C, Hiratani H, Gómez-Amoza J et al (2002) Soft contact lenses capable of sustained delivery of timolol. J Pharm Sci 91:2182–2192

    Article  PubMed  CAS  Google Scholar 

  • Ambati J, Adamis AP (2002) Transscleral drug delivery to the retina and choroid. Prog Retin Eye Res 21:145–151

    Article  PubMed  CAS  Google Scholar 

  • Ambati J, Gragoudas ES, Miller JW et al (2000) Transscleral delivery of bioactive protein to the choroid and retina. Invest Ophthalmol Vis Sci 41:1186–1191

    PubMed  CAS  Google Scholar 

  • Amrite AC, Kompella UB (2005) Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol 57:1555–1563

    Article  PubMed  CAS  Google Scholar 

  • Andrade-Vivero P, Fernandez-Gabriel E, Alvarez-Lorenzo C et al (2007) Improving the loading and release of NSAIDs from pHEMA hydrogels by copolymerization with functionalized monomers. J Pharm Sci 96:802–813

    Article  PubMed  CAS  Google Scholar 

  • Ayalasomayajula SP, Kompella UB (2004a) Retinal delivery of celecoxib is several-fold higher following subconjunctival administration compared to systemic administration. Pharm Res 21:1797–1804

    Article  PubMed  CAS  Google Scholar 

  • Ayalasomayajula SP, Kompella UB (2004b) Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced retinal oxidative stress. Invest Ophthalmol Vis Sci 45:U342

    Article  Google Scholar 

  • Ayalasomayajula SP, Kompella UB (2005) Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model. Eur J Pharmacol 511:191–198

    Article  PubMed  CAS  Google Scholar 

  • Ballios BG, Cooke MJ, van der Kooy D et al (2010) A hydrogel-based stem cell delivery system to treat retinal degenerative diseases. Biomaterials 31:2555–2564

    Article  PubMed  CAS  Google Scholar 

  • Bourges JL, Bloquel C, Thomas A et al (2006) Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev 58:1182–1202

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Zhang C, Shen W et al (2007) Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J Control Release 120:186–194

    Article  PubMed  CAS  Google Scholar 

  • Carcaboso AM, Chiappetta DA, Opezzo JA et al (2010) Episcleral implants for topotecan delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci 51:2126–2134

    Article  PubMed  Google Scholar 

  • Cheruvu NPS, Amrite AC, Kompella UB (2008) Effect of eye pigmentation on transscleral drug delivery. Invest Ophthalmol Vis Sci 49:333–341

    Article  PubMed  Google Scholar 

  • Chirila T, Thompson D, Constable I (1992) In vitro cytotoxicity of melanized poly(2-hydroxyethyl methacrylate) hydrogels, a novel class of ocular biomaterials. J Biomater Sci Polym Ed 3:481–498

    Article  PubMed  CAS  Google Scholar 

  • Choonara YE, Pillay V, Danckwerts MP et al (2010) A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases. J Pharm Sci 99:2219–2239

    Article  PubMed  CAS  Google Scholar 

  • Dai CY, Wang BC, Zhao HW (2005) Microencapsulation peptide and protein drugs delivery system. Colloids Surf B 41:117–120

    Article  CAS  Google Scholar 

  • Debbasch C, De La Salle S, Brignole F et al (2002) Cytoprotective effects of hyaluronic acid and carbomer 934P in ocular surface epithelial cells. Invest Ophthalmol Vis Sci 43:3409–3415

    PubMed  Google Scholar 

  • Duvvuri S, Janoria KG, Pal D et al (2007) Controlled delivery of ganciclovir to the retina with drug-loaded poly(D, L-lactide-co-glycolide) (PLGA) microspheres dispersed in PLGA-PEG-PLGA gel: a novel intravitreal delivery system for the treatment of cytomegalovirus retinitis. J Ocul Pharmacol Ther 23:264–274

    Article  PubMed  CAS  Google Scholar 

  • Eljarrat-Binstock E, Raiskup F, Frucht-Pery J et al (2005) Transcorneal and transscleral iontophoresis of dexamethasone phosphate using drug loaded hydrogel. J Control Release 106:386–390

    Article  PubMed  CAS  Google Scholar 

  • Eljarrat-Binstock E, Domb AJ, Orucov F et al (2007) Methotrexate delivery to the eye using transscleral hydrogel iontophoresis. Curr Eye Res 32:639–646

    Article  PubMed  CAS  Google Scholar 

  • Eljarrat-Binstock E, Domb AJ, Orucov F et al (2008a) In vitro and in vivo evaluation of carboplatin delivery to the eye using hydrogel-iontophoresis. Curr Eye Res 33:269–275

    Article  PubMed  CAS  Google Scholar 

  • Eljarrat-Binstock E, Orucov F, Frucht-Pery J et al (2008b) Methylprednisolone delivery to the back of the eye using hydrogel iontophoresis. J Ocul Pharmacol Ther 24:344–350

    Article  PubMed  CAS  Google Scholar 

  • Eljarrat-Binstock E, Pe’er J, Domb AJ (2010) New techniques for drug delivery to the posterior eye segment. Pharm Res 27:530–543

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Sun Y, Ren F et al (2010) PLGA-PEG-PLGA hydrogel for ocular drug delivery of dexamethasone acetate. Drug Dev Ind Pharm 36(10):1131–1138

    Article  PubMed  CAS  Google Scholar 

  • Gaudana R, Ananthula H, Parenky A et al (2010) Ocular drug delivery. AAPS J 12(3):348–360

    Article  PubMed  CAS  Google Scholar 

  • Gilhotra RM, Mishra DN (2008) Alginate-chitosan film for ocular drug delivery: effect of surface cross-linking on film properties and characterization. Pharmazie 63:576–579

    PubMed  CAS  Google Scholar 

  • Gorle AP, Gattani SG (2010) Development and evaluation of ocular drug delivery system. Pharm Dev Technol 15:46–52

    Article  PubMed  CAS  Google Scholar 

  • Gukasyan HJ, Kim K-J, Lee VHL (2007) The conjunctival barrier in ocular drug delivery. In: Ehrhardt C, Kim KJ (eds) Drug absorption studies. Springer, New York

    Google Scholar 

  • Hironaka K, Inokuchi Y, Tozuka Y et al (2009) Design and evaluation of a liposomal delivery system targeting the posterior segment of the eye. J Control Release 136:247–253

    Article  PubMed  CAS  Google Scholar 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Lowe TL (2005) Biodegradable thermoresponsive hydrogels for aqueous encapsulation and controlled release of hydrophilic model drugs. Biomacromolecules 6:2131–2139

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Leobandung W, Foss A et al (2000) Molecular aspects of muco- and bioadhesion: tethered structures and site-specific surfaces. J Control Release 65:63–71

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Nayak BR, Lowe TL (2004) Synthesis and characterization of novel thermoresponsive-co-biodegradable hydrogels composed of N-isopropylacrylamide, poly(L-lactic acid), and dextran. J Polym Sci A Polym Chem 42:5054–5066

    Article  CAS  Google Scholar 

  • Hughes PM, Olejnik O, Chang-Lin JE et al (2005) Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev 57:2010–2032

    Article  PubMed  CAS  Google Scholar 

  • Jaffe GJ, Martin D, Callanan D et al (2006) Fluocinolone acetonide implant (Retisert) for noninfectious posterior uveitis – thirty-four-week results of a multicenter randomized clinical study. Ophthalmology 113:1020–1027

    Article  PubMed  Google Scholar 

  • Janoria KG, Gunda S, Boddu SHS et al (2007) Novel approaches to retinal drug delivery. Expert Opin Drug Deliv 4:371–388

    Article  PubMed  CAS  Google Scholar 

  • Kang Derwent J, Mieler W (2008) Thermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye. Trans Am Ophthalmol Soc 106:206–213

    PubMed  Google Scholar 

  • Kang DJ, Mieler W (2008) Thermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye. Trans Am Ophthalmol Soc 106:206–213

    Google Scholar 

  • Khattak S, Spatara M, Roberts L et al (2006) Application of colorimetric assays to assess viability, growth and metabolism of hydrogel-encapsulated cells. Biotechnol Lett 28:1361–1370

    Article  PubMed  CAS  Google Scholar 

  • Kim TW, Lindsey JD, Aihara M et al (2002) Intraocular distribution of 70-kDa dextran after subconjunctival injection in mice. Invest Ophthalmol Vis Sci 43:1809–1816

    PubMed  Google Scholar 

  • Kompella UB, Bandi N, Ayalasomayajula SP (2003) Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci 44:1192–1201

    Article  PubMed  Google Scholar 

  • Kumar S, Haglund BO, Himmelstein KJ (1994) In situ-forming gels for ophthalmic drug delivery. J Ocul Pharmacol Ther 10:47–56

    Article  CAS  Google Scholar 

  • Kuno N, Fujii S (2010) Biodegradable intraocular therapies for retinal disorders progress to date. Drugs Aging 27:117–134

    Article  PubMed  CAS  Google Scholar 

  • Lai JY, Ma DHK, Cheng HY et al (2010) Ocular biocompatibility of carbodiimide cross-linked hyaluronic acid hydrogels for cell sheet delivery carriers. J Biomater Sci Polym Ed 21:359–376

    Article  PubMed  CAS  Google Scholar 

  • Lee SS, Robinson MR (2009) Novel drug delivery systems for retinal diseases: a review. Ophthalmic Res 41:124–135

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Metters A (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Hedberg E, Liu Z et al (2000) Preparation of macroporous poly(2-hydroxyethyl methacrylate) hydrogels by enhanced phase separation. Biomaterials 21:2163–2169

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Li J, Nie S et al (2006) Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm 315:12–17

    Article  PubMed  CAS  Google Scholar 

  • Ludwig A (2005) The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 57:1595–1639

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Kirker K, Prestwich G (2000) Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release 69:169–184

    Article  PubMed  CAS  Google Scholar 

  • Luprano V, Ramires P, Montagna G et al (1997) Non-destructive characterization of hydrogels. J Mater Sci Mater Med 8:175–178

    Article  PubMed  CAS  Google Scholar 

  • Mac Gabhann F, Demetriades AM, Deering T et al (2007) Protein transport to choroid and retina following periocular injection: theoretical and experimental study. Ann Biomed Eng 35:615–630

    Article  PubMed  Google Scholar 

  • Maia J, Ferreira L, Carvalho R et al (2005) Synthesis and characterization of new injectable and degradable dextran-based hydrogels. Polymer 46:9604–9614

    Article  CAS  Google Scholar 

  • Mishra P, Dadsetan M, Rajagopalan S et al (2007) Using magnetic resonance microscopy to assess the osteogenesis in porous hydrogels. Mater Res Soc Symp Proc 984:33–38

    Google Scholar 

  • Misra G, Singh R, Aleman T et al (2009) Subconjunctivally implantable hydrogels with degradable and thermoresponsive properties for sustained release of insulin to the retina. Biomaterials 30:6541–6547

    Article  PubMed  CAS  Google Scholar 

  • Moriyama K, Yui N (1996) Regulated insulin release from biodegradable dextran hydrogels containing poly(ethylene glycol). J Control Release 42:237–248

    Article  CAS  Google Scholar 

  • Mundada AS, Avari JG (2009) In situ gelling polymers in ocular drug delivery systems: a review. Crit Rev Ther Drug Carrier Syst 26:85–118

    PubMed  CAS  Google Scholar 

  • Murakami Y, Maeda M (2005) DNA-responsive hydrogels that can shrink or swell. Biomacro­molecules 6:2927–2929

    Article  PubMed  CAS  Google Scholar 

  • Myles ME, Neumann DM, Hill JM (2005) Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Deliv Rev 57:2063–2079

    Article  PubMed  CAS  Google Scholar 

  • Nanjawade BK, Manvi FV, Manjappa AS (2007) In situ-forming hydrogels for sustained ophthalmic drug delivery. J Control Release 122:119–134

    Article  PubMed  CAS  Google Scholar 

  • Pal K, Banthia A, Majumdar D (2008) Effect of heat treatment of starch on the properties of the starch hydrogels. Mater Lett 62:215–218

    Article  CAS  Google Scholar 

  • Park H, Robinson JR (1987) Mechanisms of mucoadhesion of poly(acrylic acid) hydrogels. Pharm Res 4:457–464

    Article  PubMed  CAS  Google Scholar 

  • Peppas N, Mongia N (1997) Ultrapure poly(vinyl alcohol) hydrogels with mucoadhesive drug delivery characteristics. Eur J Pharm Biopharm 43:51–58

    Article  CAS  Google Scholar 

  • Peppas NA, Bures P, Leobandung W et al (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  PubMed  CAS  Google Scholar 

  • Peppas N, Thomas J, McGinty J (2009) Molecular aspects of mucoadhesive carrier development for drug delivery and improved absorption. J Biomater Sci Polym Ed 20:1–20

    Article  PubMed  CAS  Google Scholar 

  • Peyman GA, Ganiban GJ (1995) Delivery systems for intraocular routes. Adv Drug Deliv Rev 16:107–123

    Article  CAS  Google Scholar 

  • Prasad AG, Schadlu R, Apte RS (2007) Intravitreal pharmacotherapy: applications in retinal disease. Compr Ophthalmol Update 8:259–269

    PubMed  Google Scholar 

  • Rieke ER, Amaral J, Becerra SP et al (2010) Sustained subconjunctival protein delivery using a thermosetting gel delivery system. J Ocul Pharmacol Ther 26:55–64

    Article  PubMed  CAS  Google Scholar 

  • Sanborn GE, Anand R, Torti RE et al (1992) Sustained-release ganciclovir therapy for treatment of cytomegalovirus retinitis: use ofan intravitreal device. Arch Ophthalmol 110:188–195

    PubMed  CAS  Google Scholar 

  • Sánchez-Vaquero V, Satriano C, Tejera-Sánchez N et al (2010) Characterization and cytocompatibility of hybrid aminosilane-agarose hydrogel scaffolds. Biointerphases 5:23–29

    Article  PubMed  Google Scholar 

  • Schuetz Y, Gurny R, Jordan O (2008) A novel thermoresponsive hydrogel based on chitosan. Eur J Pharm Biopharm 68:19–25

    Article  PubMed  CAS  Google Scholar 

  • Serra L, Domenech J, Peppas NA (2006) Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 27:5440–5451

    Article  PubMed  CAS  Google Scholar 

  • Shastri D, Prajapati S, Patel L (2010) Design and development of thermoreversible ophthalmic in situ hydrogel of moxifloxacin HCl. Curr Drug Deliv 7:238–243

    Google Scholar 

  • Shimura M, Nakazawa T, Yasuda K et al (2008) Comparative therapy evaluation of intravitreal bevacizumab and triamcinolone acetonide on persistent diffuse diabetic macular edema. Am J Ophthalmol 145:854–861

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Hosseini M, Hariprasad SM (2010) Polyethylene glycol hydrogel polymer sealant for closure of sutureless sclerotomies: a histologic study. Am J Ophthalmol 150(3):346–351

    Article  PubMed  CAS  Google Scholar 

  • Swindle-Reilly KE, Shah M, Hamilton PD et al (2009) Rabbit study of an in situ forming hydrogel vitreous substitute. Invest Ophthalmol Vis Sci 50:4840–4846

    Article  PubMed  Google Scholar 

  • Szepes A, Makai Z, Blümer C et al (2008) Characterization and drug delivery behaviour of starch-based hydrogels prepared via isostatic ultrahigh pressure. Carbohydr Polym 72:571–578

    Article  CAS  Google Scholar 

  • Tanaka Y, Kubota A, Matsusaki M et al (2010) Anisotropic mechanical properties of collagen hydrogels induced by uniaxial-flow for ocular applications. J Biomater Sci Polym Ed 22(11):1427–1442

    Google Scholar 

  • Ueda H, Hacker MC, Haesslein A et al (2007) Injectable, in situ forming poly(propylene fumarate)-based ocular drug delivery systems. J Biomed Mater Res A 83A:656–666

    Article  CAS  Google Scholar 

  • Van Tomme S, Mens A, van Nostrum C et al (2008) Macroscopic hydrogels by self-assembly of oligolactate-grafted dextran microspheres. Biomacromolecules 9:158–165

    Article  PubMed  Google Scholar 

  • Wadhwa S, Paliwal R, Paliwal SR et al (2009) Chitosan and its role in ocular therapeutics. Mini Rev Med Chem 9:1639–1647

    Article  PubMed  CAS  Google Scholar 

  • Yasukawa T, Ogura Y, Tabata Y et al (2004) Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res 23:253–281

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Gong C, Shi S et al (2010) Toxicity evaluation of biodegradable and thermosensitive PEG-PCL-PEG hydrogel as a potential in situ sustained ophthalmic drug delivery system. J Biomed Mater Res B 92:129–137

    Google Scholar 

  • Yokoyama F, Masada I, Shimamura K et al (1986) Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid Polym Sci 264:595–601

    Article  CAS  Google Scholar 

  • Zhang X, Yang Y, Chung T et al (2001) Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels. Langmuir 17:6094–6099

    Article  CAS  Google Scholar 

  • Zhou Y, Yang D, Ma M et al (2008) A pH-sensitive water-soluble N-carboxyethyl chitosan/poly(hydroxyethyl methacrylate) hydrogel as a potential drug sustained release matrix prepared by photopolymerization technique. Polym Adv Technol 19:1133–1141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the NIH, JDRF and Coulter Foundation grants. TWG is the Jack and Nancy Turner Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao L. Lowe PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Misra, G.P., Gardner, T.W., Lowe, T.L. (2011). Hydrogels for Ocular Posterior Segment Drug Delivery. In: Kompella, U., Edelhauser, H. (eds) Drug Product Development for the Back of the Eye. AAPS Advances in the Pharmaceutical Sciences Series, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9920-7_12

Download citation

Publish with us

Policies and ethics