Skip to main content

Development of High-Throughput Control Techniques for Tip-Based Nanofabrication

  • Chapter
  • First Online:
Tip-Based Nanofabrication

Abstract

In this chapter, we will discuss recent developments of advanced control techniques for nanoscale precision motion in general and probe-based nanofabrication (PBN) in specific. First, from the control perspective viewpoint, the advantages and challenges in parallel-probe based approach will be discussed to clarify the needs of high-speed PBN, particularly for areas such as nanoscale rapid prototyping and self-assembly based nanomanufacturing using chemical evaporation deposition (CVD). Then secondly, control challenges encountered in high-speed PBN will be discussed to introduce three main approaches to address these challenges: the robust-control based approach, the system-inversion based approach, and the iterative control approach. The basic idea and the main results obtained in these three approaches will be comparatively discussed. We finish our discussion with a few remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCF-ILC:

Current-cycle-feedback ILC

CVD:

Chemical evaporation deposition

DOF:

Degree-of-freedom

HOPG:

Highly oriented pyrolytic graphite

IIC:

Inversion-based Iterative Control

ILC:

Iterative learning control

LQR:

Linear quadratic optimization

MAIIC:

Multi-axis Inversion-based Iterative Control

MIIC:

Model-less Inversion-based Iterative Control

MIMO:

Multi-input-multi-output

PBN:

Probe-based nanofabrication

PID:

Proportional-Integral-Derivative

SISO:

Single-input-single-output

SPM:

Scanning probe microscope

STM:

Scanning tunneling microscope

References

  1. Tseng, A. A., Notargiacomo, A., & Chen, T. P. (2005). “Nanofabrication by scanning probe microscope lithography: A review”. Journal of Vacuum Science and Technology, 23, 877–894.

    Article  Google Scholar 

  2. Gates, B. D., Xu, Q., Stewart, M., Ryan, D., Willson, C. G., & Whitesides, G. M. (2005). “New approaches to nanofabrication: Molding, printing, and other techniques”. Chemical Review, 105, 1171–1196.

    Article  Google Scholar 

  3. Wouters, D., & Schubert, U. S. (2004). “Nanolithography and nanochemistry: Probe-related patterning techniques and chemical modification for nanometer-sized devices”. Angewandte Chemie, 43, 2480–2495.

    Article  Google Scholar 

  4. Geissler, M., & Xia, Y. (2004). “Patterning: Principles and some new developments”. Advanced Materials, 16, 1249–1269.

    Article  Google Scholar 

  5. Garcia, R., Martinez, R. V., & Martinez, J. (2005). Nano-chemistry and scanning probe nanolithographies”. Chemical Society Review, 35, 29–38.

    Article  Google Scholar 

  6. Xie, X., Chung, H., Sow, C., & Wee, A. (2006). “Nanoscale materials patterning and engineering by atomic force microscopy nanolithography”. Materials Science and Engineering, 54, 1–48.

    Article  Google Scholar 

  7. Yan, Y., Zou, Q., & Lin, Z. (2009). “A control approach to high-speed probe-based nanofabrication”. Nanotechnology, 20, 175301-1–175301-11.

    Google Scholar 

  8. Huang, S. M., Hong, M. H., Lu, Y. F., Lukyanchuk, B. S., Song, W. D., & Chong, T. C. (2002). “Pulsed-laser assisted nanopatterning of metallic layers combined”. Journal of Applied Physics, 91 (5), 3268–3274.

    Article  Google Scholar 

  9. Chimmalgi, A., Choi, T. Y., Grigoropoulos, C. P., & Komvopoulos, K. (2003). “Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy”. Applied Physics Letters, 82 (8), 1146–1148.

    Article  Google Scholar 

  10. Avouris, P., Martel, R., Hertel, T., & Sandstrom, R. (1998). “AFM-tip-induced and current-induced local oxidation of silicon and metals”. Applied Physics A: Materials Science & Processing, 66, s659–s667.

    Article  Google Scholar 

  11. Fontaine, P. A., Dubois, E., & Stievenard, D. (1998). “Characerization of scanning tunneling microscopy and atomic force microscopy-based techniques for nanolithography on hydrogen-passivated silicon”. Journal of Applied Physics, 84 (4), 1776–1781.

    Article  Google Scholar 

  12. Tseng, A. A., Notargiacomo, A., & Chen, T. P. (2005). “Nanofabrication by scanning probe microscope lithography: A review.” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 23, 877–894.

    Article  Google Scholar 

  13. Vettiger, P., Despont, M., Drechsler, U., Durig, U., Haberle, W., Lutwyche, M. I., et al. (2000). “The ‘millipede’: More than one thousand tips for future afm data storage”. IBM Journal of Research, 44, 323–340.

    Article  Google Scholar 

  14. Vettiger, P., Cross, G., Despont, M., Drechsler, U., Durig, U., Gotsmann, B., et al. (2002). “The ‘millipede’ – Nanotechnology entering data storage”. IEEE Transactions on Nanotechnology, 1, 39–55.

    Article  Google Scholar 

  15. Huo, F., Zheng, Z., Zheng, G., Giam, L. R., Zhang, H., & Mirkin, C. A. (2008). “Polymer pen lithography”. Science, 321, 1658–1661.

    Article  Google Scholar 

  16. Khizroev, S., & Litvinov, D. (2004). “Focused-ion-beam-based rapid prototyping of nanoscale magnetic devices.” Nanotechnology, 15, R7–R15.

    Article  Google Scholar 

  17. Watt, F., Bettiol, A. A., Kan, J. A., Teo, E. J., & Breese, M. B. (2005). “Ionbeam lithography and nanofabrication: A review”. International Journal of Nanoscience, 4, 269–286.

    Article  Google Scholar 

  18. Lindsey, J. S. (1991). “Self-assembly in synthetic routes to molecular devices biological principles and chemical perspectives: A review”. New Journal of Chemistry, 15, 153–180.

    Google Scholar 

  19. Park, C., Yoon, J., & Thomas, E. L. (2003). “Enabling nanotechnology with self assembled block copolymer patterns”. Polymer, 44, 6725–6760.

    Article  Google Scholar 

  20. Croft, D., Shedd, G., & Devasia, S. (2001). “Creep, hysteresis, and vibration compensation for piezoactuators: Atomic force microscopy application”. ASME Journal of Dynamic Systems, Measurement and Control, 123 (1), 35–43.

    Article  Google Scholar 

  21. Zou, Q., Leang, K. K., Sadoun, E., Reed, M. J., & Devasia, S. (2004). “Control issues in high-speed AFM for biological applications: Collagen imaging example”. Special Issue on “Advances in Nano-technology Control”, Asian Journal Control, 8, 164–178.

    Google Scholar 

  22. Wu, Y., & Zou, Q. (2007). “Iterative control approach to compensate for both the hysteresis and the dynamics effects of piezo actuators”. IEEE Transactions on Control Systems Technology, 15, 936–944.

    Article  Google Scholar 

  23. Leang, K. K., & Devasia, S. (2005). “Design of hysteresis-compensating iterative leaning control for atomic force microscopes”. Mechatronics, 16, 141–158.

    Article  Google Scholar 

  24. Moheimani, S. O. (2008). “Invited review article: Accurate and fast nanopositioning with piezoelectric tube scanners: Emerging trends and future challenges”. Review of Scientific Instruments, 79 (7), 071101.

    Article  Google Scholar 

  25. Devasia, S., Eleftheriou, E., & Moheimani, S. O. (2007). “A survey of control issues in nanopositioning”. IEEE Transactions on Control Systems Technology, 15, 802–823.

    Article  Google Scholar 

  26. Abramovitch, D., Andersson, S., Pao, L., & Schitter, G. (2007). “A tutorial on the control of atomic force microscope”. Proceedings of American Control Conference (pp. 3499–3502). New York City, NY.

    Google Scholar 

  27. Devasia, E., Eleftheriou, S., & Moheimani, S. O. (2007). “A survey of control issues in nanopositioning”. IEEE Transactions on Control Systems Technology, 15 (5), 802–823.

    Article  Google Scholar 

  28. Requicha, A. A. (2003). “Nanorobots, NEMS and nanoassembly”. Proceedings of the IEEE, 91 (11), 1922–1932.

    Article  Google Scholar 

  29. Rifai, O. E., & Youcef-Toumi, K. (2001). “Coupling in piezoelectric tube scanners used in scanning probe microscopes”. American Control Conference (pp. 3251–3255). Arlington, VA.

    Google Scholar 

  30. Maess, J., Fleming, A. J., & Allgower, F. (2008). “Simulation of dynamics-coupling in piezoelectric tube scanners by reduced order finite element analysis”. Review of Scientific Instruments, 79 (1).

    Google Scholar 

  31. Tien, S., Zou, Q., & Devasia, S. (2005). Control of dynamics-coupling effects in piezo-actuator for high-speed AFM operation. IEEE Transactions on Control Systems Technology, 13 (6), 921–931.

    Article  Google Scholar 

  32. Wu, Y., Shi, J., Su, C., & Zou, Q. (2009). “A control approach to cross-coupling compensation of piezotube scanners in tapping-mode atomic force microscope imaging”. Review of Scientific Instruments, 80 (4).

    Google Scholar 

  33. Ando, T., Uchihashi, T., Kodera, N., Miyagi, A., Nakakita, R., Yamashita, H., et al. (2006). “High-speed atomic force microscopy for studying the dynamic behavior of protein molecules at work”. Japanese Journal of Applied Physics, 45 (3B), 1897–1903.

    Article  Google Scholar 

  34. Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K., & Toda, A. (2001). “A high-speed atomic force microscope for studying biological macromolecules”. Proceedings of the National Academy of Sciences of the USA, 98 (22), 12468–12472.

    Article  Google Scholar 

  35. Frenken, J. W., Oosterkamp, T. H., Hendrisken, B. L., & Bost, M. J. (2005). “Pushing the limits of SPM”. Materials Today, 8 (5), 20–25.

    Article  Google Scholar 

  36. Rosta, M. J., Crama, L., Schakel, P., Tol, E. v., Velzen-Williams, G. B., Overgauw, C. F., et al. (2005). “Scanning probe microscopes go video rate and beyond”. Review of Scientific Instruments, 76, 53710–53718.

    Article  Google Scholar 

  37. Humphris, A. D., Hobbs, J. K., & Miles, M. J. (2003). “Ultrahigh-speed scanning near-field optical microscopy capable of over 100 frames per second”. Applied Physics Letters, 83 (1), 6–8.

    Article  Google Scholar 

  38. Schitter, G., Astrom, K., DeMartini, B., Thurner, P., Turner, K., & Hansma, P. (2007). “Design and modeling of a high-speed AFM-scanner”. IEEE Transactions on Control Systems Technology, 15 (5), 906–915.

    Article  Google Scholar 

  39. Fleming, A., Kenton, B. J., & Leang, K. K. (2010). “Bridging the gap between conventional and video-speed scanning probe microscopes”. Ultramicroscopy, 110, 1205–1211.

    Article  Google Scholar 

  40. Clayton, G. M., Tien, S., Leang, K. K., Zou, Q., & Devasia, S. (2009). “A review of feedforward control approaches in nanopositioning for high-speed spm”. ASME Journal of Dynamic Systems, Measurement and Control, 131, 061101-1–061101-19.

    Google Scholar 

  41. Ando, Y., Ikehara, T., & Matsumoto, S. (2007). “Development of three-dimensional microstages using inclined deep-reactive ion etching”. Journal of Microelectromechanical Systems, 16 (3), 613–621.

    Article  Google Scholar 

  42. Yong, Y. K., Aphale, S. S., & RezaMoheimani, S. O. (2009). “Design, identification, and control of a flexure-based xy stage for fast nanoscale positioning”. IEEE Transactions on Control Systems Technology, 8 (1), 46–54.

    Google Scholar 

  43. Li, Y., & Bechhoefer, J. (2007). “Feedforward control of a piezoelectric flexure stage for AFM”. Review of Scientific Instruments, 78, 013702.

    Google Scholar 

  44. Sebastian, A., Gannepalli, A., & Salapaka, M. (2007). “A review of the systems approach to the analysis of dynamic-mode atomic force microscopy”. IEEE Transactions on Control Systems Technology, 15 (5), 952–959.

    Article  Google Scholar 

  45. Franklin, G. F., & Powell, A. E.-N. (2002). Feedback Control of Dynamic Systems (4th ed.). Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  46. Ogata, K. (1990). Modern Control Engineering (2nd ed.). Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  47. Liu, G.-Y., Xu, S., & Qian, Y. (2000). “Nanofabrication of self-assembled monolayers using scanning probe lithography”. Accounts of Chemical Research, 33 (7), 457–466.

    Article  Google Scholar 

  48. Bourne, K., Kapoor, S. G., & DeVor, R. E. (2010). “Study of a high performance AFM probe-based microscribing process”. ASME Journal of Manufacturing Science and Engineering, 132 (3), 030906-1–030906-10.

    Google Scholar 

  49. Barrett, R. C., & Quate, C. F. (1991). “Optical scan-correction system applied to atomatic force micropscopy”. Review of Scientific Instruments, 62, 1393–1399.

    Article  Google Scholar 

  50. Schitter, G., Menold, P., Knapp, H., Allgower, F., & Stemmer, A. (2001). “High performance feedback for fast scanning atomic force microscopes”. Review of Scientific Instruments, 72 (8), 3320–3327.

    Article  Google Scholar 

  51. Salapaka, S., Sebastian, A., Cleveland, J. P., & Salapaka, M. V. (2002). “High bandwidth nano-positioner: A robust control approach”. Review of Scientific Instruments, 73 (9), 3232–3241.

    Article  Google Scholar 

  52. Yan, Y., Wu, Y., Zou, Q., & Su, C. (2008). “An integrated approach to piezo actuators positioning in high-speed AFM imaging”. Review of Scientific Instruments, 79, 073704–073712.

    Article  Google Scholar 

  53. Skogestad, S., & Postlethwaite, I. (2005). Multivariable Feedback Control: Analysis and Design (2nd ed.). New York: Wiley.

    Google Scholar 

  54. Zhou, K., Doyle, J., & Glover, K. (1995). Robust and Optimal Control. New York: Prentice Hall.

    Google Scholar 

  55. Dullerud, G. E., & Paganini, F. G. (2001). A Course in Robust Control Theory: A Convex Approach. Berlin: Springer.

    Google Scholar 

  56. Dong, J., Salapaka, S. M., & Ferreira, P. M. (2008). “Robust control of a parallel-lkinematic nanopositioner”. ASME Journal of Dynamic Systems, Measurement and Control, 130, 041007-1–041007-15.

    Google Scholar 

  57. Schitter, G., Stemmer, A., & Allgower, F. (2003). “Robust 2dof-control of a piezoelectric tube scanner for high-speed atomic force microscopy”. American Control Conference (pp. 3720–3725). Denver, CO.

    Google Scholar 

  58. Sebastian, A., & Salapaka, S. (2005). “Design methodologies for robust nanopositioning”. IEEE Transactions on Control Systems Technology, 13 (6), 868–876.

    Article  Google Scholar 

  59. Sahoo, R. D., Sebastian, A., & Salapaka, M. V. (2003). “Transient-signal-based sample-detection in atomic force microscopy”. Applied Physics Letters, 83 (26), 5521–5523.

    Google Scholar 

  60. Lee, C., & Salapaka, S. M. (2009). “Robust broadband nanopositioning: Fundamental trade-offs, analysis, and design in a two-degree-of-freedom control framework”. Nanotechnology, 20 (3), 035501.

    Google Scholar 

  61. Barth, J. V., Costantini, G., & Kern, K. (2005). “Engineering atomic and molecular nanostructures at surfaces”. Nature, 437, 671–679.

    Article  Google Scholar 

  62. Pantazi, A., Sebastian, A., Cherubini, G., Lantz, M., Pozidis, H., Rothuizen, H., et al. (2007). “Control of mems-based scanning-probe data-storage devices”. IEEE Transactions on Control Systems Technology, 15 (5), 824–841.

    Article  Google Scholar 

  63. Pantazi, A., Sebastian, A., Pozidis, H., & Eleftheriou, E. (2005). “Two-sensor-based h control for nanopositioning in probe storage”. IEEE Conference on Decision and Control (pp. 1174–1179). Seville, Spain.

    Google Scholar 

  64. Stein, G. (2003). “Respect the unstable”. IEEE Control System Magazine, 23 (4), 12–25.

    Article  Google Scholar 

  65. Isidori, A. (1995). Nonlinear Control Systems (3rd ed.). London: Springer.

    MATH  Google Scholar 

  66. Zou, Q., & Devasia, S. (1999). “Preview-based stable-inversion for output tracking of linear systems”. ASME Journal of Dynamic Systems, Measurement and Control, 121, 625–630.

    Article  Google Scholar 

  67. Zou, Q., & Devasia, S. (2004). “Preview-based optimal inversion for output tracking: Application to scanning tunneling microscopy”. IEEE Transaction on Control Systems Technology, 12, 375–386.

    Article  Google Scholar 

  68. Zou, Q. (2009). “Optimal preview-based stable-inversion for output tracking of nonminimum-phase linear systems”. Automatica, 45, 230–237.

    Article  MATH  Google Scholar 

  69. Devasia, S., Chen, D., & Paden, B. (1996). “Nonlinear inversion-based output tracking”. IEEE Transactions on Automatic Control, 41 (7), 930–942.

    Article  MathSciNet  MATH  Google Scholar 

  70. Devasia, S., & Paden, B. (1998). “Stable inversion for nonlinear nonminimum phase time-varying systems”. IEEE Transactions on Automatic Control, 43, 283–288.

    Article  MathSciNet  MATH  Google Scholar 

  71. Zou, Q., & Devasia, S. (2007). “Preview-based stable-inversion for output tracking of nonlinear nonminimum-phase systems: The VTOL example”. Automatica, 43 (1), 117–127.

    Article  MathSciNet  MATH  Google Scholar 

  72. Wu, Y., & Zou, Q. (2009). “Robust inversion-based 2-DOF control design for output tracking: Piezoelectric-actuator example”. IEEE Transactions on Control System Technology, 17, 1069–1082.

    Article  Google Scholar 

  73. Croft, D., McAllister, D., & Devasia, S. (1998). “High-speed scanning of piezo-probes for nano-fabrication”. ASME Journal of Manufacturing Science and Engineering, 120, 617–622.

    Article  Google Scholar 

  74. Helfrich, B. E., Lee, C., Bristow, D. A., Xiao, X. H., Dong, J., Alleyne, A. G., Salapaka, S. M., & Ferreira, P. M. (2010). “Combined h -feedback control and iterative learning control design with application to nanopositioning systems”. IEEE Transactions on Control Systems Technology, 18 (2), 336–351.

    Article  Google Scholar 

  75. Wu, Y., & Zou, Q. (2009). “An iterative based feedforward-feedback control approach to high-speed atomic force microscope imaging”. ASME Journal of Dynamic Systems, Measurement and Control, 131, 061105-1–061105-9.

    Google Scholar 

  76. Wu, Y., Zou, Q., & Su, C. (2009). “A current cycle feedback iterative learning control approach for AFM imaging”. IEEE Transactions on Nanotechnology, 8 (4), 515–527.

    Article  Google Scholar 

  77. Kavli, T. (1991). “Frequency domain synthesis of trajectory learning controller for robot manipulators”. Journal of Robotic Systems, 9 (5), 663–680.

    Article  Google Scholar 

  78. Moore, K. L., Dahleh, M., & Bhatacharyya, S. P. (1992). “Iterative learning control: A survey and new results”. Journal of Robotic Systems, 9 (5), 563–594.

    Article  MATH  Google Scholar 

  79. Moore, K. L., & Xu, J.-X. (2000). “Special issue on iterative learning control”. International Journal of Control, 73 (10).

    Google Scholar 

  80. Ahn, H.-S., Chen, Y., & Moore, K. L. (2007). “Iterative learning control: Brief survey and categorization”. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 37 (6), 1099–1121.

    Article  Google Scholar 

  81. Ghosh, J., & Paden, B. (2002). “A pseudoinverse-based iterative learning control”. IEEE Transactions on Automatic Control, 47, 831–836.

    Article  MathSciNet  Google Scholar 

  82. Ghosh, J., & Paden, B. (2000). “Nonlinear repetitive control”. IEEE Transactions on Automatic Control, 45, 949–954.

    Article  MathSciNet  MATH  Google Scholar 

  83. Ghosh, J., & Paden, B. (1999). “Pseudo-inverse based iterative learning control for nonlinear plants with disturbances”. IEEE Conference on Decision and Control (vol. 11, pp. 5206–5212). Phoenix, AZ.

    Google Scholar 

  84. Tien, S., Zou, Q., & Devasia, S. (2004). “Iterative control of dynamics-coupling effects in piezo-based nano-positioners for high-speed AFM”. Proceedings of the 2004 IEEE International Conference on Control Applications (pp. 711–717). Taipei, Taiwan.

    Google Scholar 

  85. Kim, K., Zou, Q., & Su, C. (2008). “A new approach to scan-trajectory design and track: AFM force measurement example”. ASME Journal of Dynamic Systems, Measurement and Control, 130, 051005-1–051005-10.

    Google Scholar 

  86. Kim, K.-S., & Zou, Q. (2008). “A model-less inversion-based iterative control technique for output tracking: Piezo actuator example”. ACC (pp. 2710–2715). Seattle, WA.

    Google Scholar 

  87. Yan, Y., Wang, H., & Zou, Q. (2010). “A decoupled inversion-based iterative control approach to multi-axis precision positioning: 3-d nanopositioning example”. American Control Conference (pp. 1290–1295). Baltimore, MD.

    Google Scholar 

  88. Arimoto, S., Kawamura, S., & Miyazaki, F. (1986). “Convergence, stability, and robustness of learning control schemes for robot manipulators”. Proceedings of the International Symposium on Robot Manipulators on Recent Trends in Robotics: Modeling, Control and Education (pp. 307–316). Albuquerque, NM.

    Google Scholar 

  89. Xu, Z., Kim, K., Zou, Q., & Shrotriya, P. (2008). “Broadband measurement of ratedependent viscoelasticity at nanoscale using scanning probe microscope: Poly(dimethylsiloxane) example”. Applied Physics Letters, 93 (13), 133103.

    Article  Google Scholar 

  90. Youla, D. C., & Bongiorno, J. J., Jr. (1985). “A feedback theory of two-degree-of-freedom optimal wiener-hopf design”. IEEE Transactions on Automatic Control, 30 (7), 652–665.

    Article  MathSciNet  MATH  Google Scholar 

  91. Prempain, E., & Postlethwaite, I. (2001). “Feedforward control: A full-information approach”. Automatica, 37 (1), 17–28.

    Article  MathSciNet  MATH  Google Scholar 

  92. Yaesh, I., & Shaked, U. (1991). “Two-degree-of-freedom h -optimization of multivariable feedback systems”. IEEE Transaction on Automatic Control, 36 (11), 1272–1275.

    Article  MathSciNet  Google Scholar 

  93. Schitter, G., Stemmer, A., & Allgower, F. (2004). “Robust two-degree-of-freedom control of an atomic force microscope”. Asian Journal of Control, 6 (2), 156–163.

    Article  Google Scholar 

  94. Lee, C., & Salapaka, S. M. (2009). “Robust broadband nanopositioning: Fundamental trade-offs, analysis, and design in a two-degree-of-freedom control framework”. Nanotechnology, 20 (3), 035501.

    Article  Google Scholar 

  95. Goh, C., & Yan, W. (1996). “An h synthesis of robust current error feedback learning control”. ASME Journal of Dynamic Systems, Measurement and Control, 118, 341–346.

    Article  MATH  Google Scholar 

  96. Doh, T.-Y., Moon, J.-H., Jin, K., & Chung, M. (1999). “Robust iterative learning control with current feedback for uncertain linear systems”. International Journal System Science, 30 (1), 39–47.

    Article  MATH  Google Scholar 

  97. Owens, D., & Munde, G. (2000). “Error convergence in an adaptive iterative learning controller”. International Journal of Control, 73, 851–857.

    Article  MathSciNet  MATH  Google Scholar 

  98. Longman, R. (2000). “Iterative learning control and repetitive control for engineering practice”. International Journal of Control, 73 (10), 930–954.

    Article  MathSciNet  MATH  Google Scholar 

  99. Roover, D. d., & Bosgra, O. (2000). “Synthesis of robust multivariable iterative learning controllers with application to a wafer stage motion system”. International Journal of Control, 73 (10), 968–979.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank co-workers Dr. Ying Wu, Dr. Kyong-soo Kim, and Ms. Yan Yan, for their contributions (as referred in the writing). The authors also would like to thank Prof. Zhiqun Lin from Iowa State University and Dr. Chanmin Su from the Bruker-Nano Instrument Inc. for their help in sample preparation (Lin) and SPM instrumentation (Su), respectively. The research was funded through NSF Grants No. CMMI 0624597, DUE 0632908, and CAREER-award CMMI-1066055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingze Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, H., Zou, Q. (2011). Development of High-Throughput Control Techniques for Tip-Based Nanofabrication. In: Tseng, A. (eds) Tip-Based Nanofabrication. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9899-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9899-6_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9898-9

  • Online ISBN: 978-1-4419-9899-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics