Development of High-Throughput Control Techniques for Tip-Based Nanofabrication



In this chapter, we will discuss recent developments of advanced control techniques for nanoscale precision motion in general and probe-based nanofabrication (PBN) in specific. First, from the control perspective viewpoint, the advantages and challenges in parallel-probe based approach will be discussed to clarify the needs of high-speed PBN, particularly for areas such as nanoscale rapid prototyping and self-assembly based nanomanufacturing using chemical evaporation deposition (CVD). Then secondly, control challenges encountered in high-speed PBN will be discussed to introduce three main approaches to address these challenges: the robust-control based approach, the system-inversion based approach, and the iterative control approach. The basic idea and the main results obtained in these three approaches will be comparatively discussed. We finish our discussion with a few remarks.


High-speed probe-based nanofabrication Piezoelectric actuator nanopositioning control Stable-inversion Preview-based control Iterative learning control Robust control Feedforward-feedback control Cross-axis dynamics coupling Mechanical-scratching 



Current-cycle-feedback ILC


Chemical evaporation deposition




Highly oriented pyrolytic graphite


Inversion-based Iterative Control


Iterative learning control


Linear quadratic optimization


Multi-axis Inversion-based Iterative Control


Model-less Inversion-based Iterative Control




Probe-based nanofabrication






Scanning probe microscope


Scanning tunneling microscope



The authors would like to thank co-workers Dr. Ying Wu, Dr. Kyong-soo Kim, and Ms. Yan Yan, for their contributions (as referred in the writing). The authors also would like to thank Prof. Zhiqun Lin from Iowa State University and Dr. Chanmin Su from the Bruker-Nano Instrument Inc. for their help in sample preparation (Lin) and SPM instrumentation (Su), respectively. The research was funded through NSF Grants No. CMMI 0624597, DUE 0632908, and CAREER-award CMMI-1066055.


  1. 1.
    Tseng, A. A., Notargiacomo, A., & Chen, T. P. (2005). “Nanofabrication by scanning probe microscope lithography: A review”. Journal of Vacuum Science and Technology, 23, 877–894.CrossRefGoogle Scholar
  2. 2.
    Gates, B. D., Xu, Q., Stewart, M., Ryan, D., Willson, C. G., & Whitesides, G. M. (2005). “New approaches to nanofabrication: Molding, printing, and other techniques”. Chemical Review, 105, 1171–1196.CrossRefGoogle Scholar
  3. 3.
    Wouters, D., & Schubert, U. S. (2004). “Nanolithography and nanochemistry: Probe-related patterning techniques and chemical modification for nanometer-sized devices”. Angewandte Chemie, 43, 2480–2495.CrossRefGoogle Scholar
  4. 4.
    Geissler, M., & Xia, Y. (2004). “Patterning: Principles and some new developments”. Advanced Materials, 16, 1249–1269.CrossRefGoogle Scholar
  5. 5.
    Garcia, R., Martinez, R. V., & Martinez, J. (2005). Nano-chemistry and scanning probe nanolithographies”. Chemical Society Review, 35, 29–38.CrossRefGoogle Scholar
  6. 6.
    Xie, X., Chung, H., Sow, C., & Wee, A. (2006). “Nanoscale materials patterning and engineering by atomic force microscopy nanolithography”. Materials Science and Engineering, 54, 1–48.CrossRefGoogle Scholar
  7. 7.
    Yan, Y., Zou, Q., & Lin, Z. (2009). “A control approach to high-speed probe-based nanofabrication”. Nanotechnology, 20, 175301-1–175301-11.Google Scholar
  8. 8.
    Huang, S. M., Hong, M. H., Lu, Y. F., Lukyanchuk, B. S., Song, W. D., & Chong, T. C. (2002). “Pulsed-laser assisted nanopatterning of metallic layers combined”. Journal of Applied Physics, 91 (5), 3268–3274.CrossRefGoogle Scholar
  9. 9.
    Chimmalgi, A., Choi, T. Y., Grigoropoulos, C. P., & Komvopoulos, K. (2003). “Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy”. Applied Physics Letters, 82 (8), 1146–1148.CrossRefGoogle Scholar
  10. 10.
    Avouris, P., Martel, R., Hertel, T., & Sandstrom, R. (1998). “AFM-tip-induced and current-induced local oxidation of silicon and metals”. Applied Physics A: Materials Science & Processing, 66, s659–s667.CrossRefGoogle Scholar
  11. 11.
    Fontaine, P. A., Dubois, E., & Stievenard, D. (1998). “Characerization of scanning tunneling microscopy and atomic force microscopy-based techniques for nanolithography on hydrogen-passivated silicon”. Journal of Applied Physics, 84 (4), 1776–1781.CrossRefGoogle Scholar
  12. 12.
    Tseng, A. A., Notargiacomo, A., & Chen, T. P. (2005). “Nanofabrication by scanning probe microscope lithography: A review.” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 23, 877–894.CrossRefGoogle Scholar
  13. 13.
    Vettiger, P., Despont, M., Drechsler, U., Durig, U., Haberle, W., Lutwyche, M. I., et al. (2000). “The ‘millipede’: More than one thousand tips for future afm data storage”. IBM Journal of Research, 44, 323–340.CrossRefGoogle Scholar
  14. 14.
    Vettiger, P., Cross, G., Despont, M., Drechsler, U., Durig, U., Gotsmann, B., et al. (2002). “The ‘millipede’ – Nanotechnology entering data storage”. IEEE Transactions on Nanotechnology, 1, 39–55.CrossRefGoogle Scholar
  15. 15.
    Huo, F., Zheng, Z., Zheng, G., Giam, L. R., Zhang, H., & Mirkin, C. A. (2008). “Polymer pen lithography”. Science, 321, 1658–1661.CrossRefGoogle Scholar
  16. 16.
    Khizroev, S., & Litvinov, D. (2004). “Focused-ion-beam-based rapid prototyping of nanoscale magnetic devices.” Nanotechnology, 15, R7–R15.CrossRefGoogle Scholar
  17. 17.
    Watt, F., Bettiol, A. A., Kan, J. A., Teo, E. J., & Breese, M. B. (2005). “Ionbeam lithography and nanofabrication: A review”. International Journal of Nanoscience, 4, 269–286.CrossRefGoogle Scholar
  18. 18.
    Lindsey, J. S. (1991). “Self-assembly in synthetic routes to molecular devices biological principles and chemical perspectives: A review”. New Journal of Chemistry, 15, 153–180.Google Scholar
  19. 19.
    Park, C., Yoon, J., & Thomas, E. L. (2003). “Enabling nanotechnology with self assembled block copolymer patterns”. Polymer, 44, 6725–6760.CrossRefGoogle Scholar
  20. 20.
    Croft, D., Shedd, G., & Devasia, S. (2001). “Creep, hysteresis, and vibration compensation for piezoactuators: Atomic force microscopy application”. ASME Journal of Dynamic Systems, Measurement and Control, 123 (1), 35–43.CrossRefGoogle Scholar
  21. 21.
    Zou, Q., Leang, K. K., Sadoun, E., Reed, M. J., & Devasia, S. (2004). “Control issues in high-speed AFM for biological applications: Collagen imaging example”. Special Issue on “Advances in Nano-technology Control”, Asian Journal Control, 8, 164–178.Google Scholar
  22. 22.
    Wu, Y., & Zou, Q. (2007). “Iterative control approach to compensate for both the hysteresis and the dynamics effects of piezo actuators”. IEEE Transactions on Control Systems Technology, 15, 936–944.CrossRefGoogle Scholar
  23. 23.
    Leang, K. K., & Devasia, S. (2005). “Design of hysteresis-compensating iterative leaning control for atomic force microscopes”. Mechatronics, 16, 141–158.CrossRefGoogle Scholar
  24. 24.
    Moheimani, S. O. (2008). “Invited review article: Accurate and fast nanopositioning with piezoelectric tube scanners: Emerging trends and future challenges”. Review of Scientific Instruments, 79 (7), 071101.CrossRefGoogle Scholar
  25. 25.
    Devasia, S., Eleftheriou, E., & Moheimani, S. O. (2007). “A survey of control issues in nanopositioning”. IEEE Transactions on Control Systems Technology, 15, 802–823.CrossRefGoogle Scholar
  26. 26.
    Abramovitch, D., Andersson, S., Pao, L., & Schitter, G. (2007). “A tutorial on the control of atomic force microscope”. Proceedings of American Control Conference (pp. 3499–3502). New York City, NY.Google Scholar
  27. 27.
    Devasia, E., Eleftheriou, S., & Moheimani, S. O. (2007). “A survey of control issues in nanopositioning”. IEEE Transactions on Control Systems Technology, 15 (5), 802–823.CrossRefGoogle Scholar
  28. 28.
    Requicha, A. A. (2003). “Nanorobots, NEMS and nanoassembly”. Proceedings of the IEEE, 91 (11), 1922–1932.CrossRefGoogle Scholar
  29. 29.
    Rifai, O. E., & Youcef-Toumi, K. (2001). “Coupling in piezoelectric tube scanners used in scanning probe microscopes”. American Control Conference (pp. 3251–3255). Arlington, VA.Google Scholar
  30. 30.
    Maess, J., Fleming, A. J., & Allgower, F. (2008). “Simulation of dynamics-coupling in piezoelectric tube scanners by reduced order finite element analysis”. Review of Scientific Instruments, 79 (1).Google Scholar
  31. 31.
    Tien, S., Zou, Q., & Devasia, S. (2005). Control of dynamics-coupling effects in piezo-actuator for high-speed AFM operation. IEEE Transactions on Control Systems Technology, 13 (6), 921–931.CrossRefGoogle Scholar
  32. 32.
    Wu, Y., Shi, J., Su, C., & Zou, Q. (2009). “A control approach to cross-coupling compensation of piezotube scanners in tapping-mode atomic force microscope imaging”. Review of Scientific Instruments, 80 (4).Google Scholar
  33. 33.
    Ando, T., Uchihashi, T., Kodera, N., Miyagi, A., Nakakita, R., Yamashita, H., et al. (2006). “High-speed atomic force microscopy for studying the dynamic behavior of protein molecules at work”. Japanese Journal of Applied Physics, 45 (3B), 1897–1903.CrossRefGoogle Scholar
  34. 34.
    Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K., & Toda, A. (2001). “A high-speed atomic force microscope for studying biological macromolecules”. Proceedings of the National Academy of Sciences of the USA, 98 (22), 12468–12472.CrossRefGoogle Scholar
  35. 35.
    Frenken, J. W., Oosterkamp, T. H., Hendrisken, B. L., & Bost, M. J. (2005). “Pushing the limits of SPM”. Materials Today, 8 (5), 20–25.CrossRefGoogle Scholar
  36. 36.
    Rosta, M. J., Crama, L., Schakel, P., Tol, E. v., Velzen-Williams, G. B., Overgauw, C. F., et al. (2005). “Scanning probe microscopes go video rate and beyond”. Review of Scientific Instruments, 76, 53710–53718.CrossRefGoogle Scholar
  37. 37.
    Humphris, A. D., Hobbs, J. K., & Miles, M. J. (2003). “Ultrahigh-speed scanning near-field optical microscopy capable of over 100 frames per second”. Applied Physics Letters, 83 (1), 6–8.CrossRefGoogle Scholar
  38. 38.
    Schitter, G., Astrom, K., DeMartini, B., Thurner, P., Turner, K., & Hansma, P. (2007). “Design and modeling of a high-speed AFM-scanner”. IEEE Transactions on Control Systems Technology, 15 (5), 906–915.CrossRefGoogle Scholar
  39. 39.
    Fleming, A., Kenton, B. J., & Leang, K. K. (2010). “Bridging the gap between conventional and video-speed scanning probe microscopes”. Ultramicroscopy, 110, 1205–1211.CrossRefGoogle Scholar
  40. 40.
    Clayton, G. M., Tien, S., Leang, K. K., Zou, Q., & Devasia, S. (2009). “A review of feedforward control approaches in nanopositioning for high-speed spm”. ASME Journal of Dynamic Systems, Measurement and Control, 131, 061101-1–061101-19.Google Scholar
  41. 41.
    Ando, Y., Ikehara, T., & Matsumoto, S. (2007). “Development of three-dimensional microstages using inclined deep-reactive ion etching”. Journal of Microelectromechanical Systems, 16 (3), 613–621.CrossRefGoogle Scholar
  42. 42.
    Yong, Y. K., Aphale, S. S., & RezaMoheimani, S. O. (2009). “Design, identification, and control of a flexure-based xy stage for fast nanoscale positioning”. IEEE Transactions on Control Systems Technology, 8 (1), 46–54.Google Scholar
  43. 43.
    Li, Y., & Bechhoefer, J. (2007). “Feedforward control of a piezoelectric flexure stage for AFM”. Review of Scientific Instruments, 78, 013702.Google Scholar
  44. 44.
    Sebastian, A., Gannepalli, A., & Salapaka, M. (2007). “A review of the systems approach to the analysis of dynamic-mode atomic force microscopy”. IEEE Transactions on Control Systems Technology, 15 (5), 952–959.CrossRefGoogle Scholar
  45. 45.
    Franklin, G. F., & Powell, A. E.-N. (2002). Feedback Control of Dynamic Systems (4th ed.). Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  46. 46.
    Ogata, K. (1990). Modern Control Engineering (2nd ed.). Englewood Cliffs, NJ: Prentice-Hall.MATHGoogle Scholar
  47. 47.
    Liu, G.-Y., Xu, S., & Qian, Y. (2000). “Nanofabrication of self-assembled monolayers using scanning probe lithography”. Accounts of Chemical Research, 33 (7), 457–466.CrossRefGoogle Scholar
  48. 48.
    Bourne, K., Kapoor, S. G., & DeVor, R. E. (2010). “Study of a high performance AFM probe-based microscribing process”. ASME Journal of Manufacturing Science and Engineering, 132 (3), 030906-1–030906-10.Google Scholar
  49. 49.
    Barrett, R. C., & Quate, C. F. (1991). “Optical scan-correction system applied to atomatic force micropscopy”. Review of Scientific Instruments, 62, 1393–1399.CrossRefGoogle Scholar
  50. 50.
    Schitter, G., Menold, P., Knapp, H., Allgower, F., & Stemmer, A. (2001). “High performance feedback for fast scanning atomic force microscopes”. Review of Scientific Instruments, 72 (8), 3320–3327.CrossRefGoogle Scholar
  51. 51.
    Salapaka, S., Sebastian, A., Cleveland, J. P., & Salapaka, M. V. (2002). “High bandwidth nano-positioner: A robust control approach”. Review of Scientific Instruments, 73 (9), 3232–3241.CrossRefGoogle Scholar
  52. 52.
    Yan, Y., Wu, Y., Zou, Q., & Su, C. (2008). “An integrated approach to piezo actuators positioning in high-speed AFM imaging”. Review of Scientific Instruments, 79, 073704–073712.CrossRefGoogle Scholar
  53. 53.
    Skogestad, S., & Postlethwaite, I. (2005). Multivariable Feedback Control: Analysis and Design (2nd ed.). New York: Wiley.Google Scholar
  54. 54.
    Zhou, K., Doyle, J., & Glover, K. (1995). Robust and Optimal Control. New York: Prentice Hall.Google Scholar
  55. 55.
    Dullerud, G. E., & Paganini, F. G. (2001). A Course in Robust Control Theory: A Convex Approach. Berlin: Springer.Google Scholar
  56. 56.
    Dong, J., Salapaka, S. M., & Ferreira, P. M. (2008). “Robust control of a parallel-lkinematic nanopositioner”. ASME Journal of Dynamic Systems, Measurement and Control, 130, 041007-1–041007-15.Google Scholar
  57. 57.
    Schitter, G., Stemmer, A., & Allgower, F. (2003). “Robust 2dof-control of a piezoelectric tube scanner for high-speed atomic force microscopy”. American Control Conference (pp. 3720–3725). Denver, CO.Google Scholar
  58. 58.
    Sebastian, A., & Salapaka, S. (2005). “Design methodologies for robust nanopositioning”. IEEE Transactions on Control Systems Technology, 13 (6), 868–876.CrossRefGoogle Scholar
  59. 59.
    Sahoo, R. D., Sebastian, A., & Salapaka, M. V. (2003). “Transient-signal-based sample-detection in atomic force microscopy”. Applied Physics Letters, 83 (26), 5521–5523.Google Scholar
  60. 60.
    Lee, C., & Salapaka, S. M. (2009). “Robust broadband nanopositioning: Fundamental trade-offs, analysis, and design in a two-degree-of-freedom control framework”. Nanotechnology, 20 (3), 035501.Google Scholar
  61. 61.
    Barth, J. V., Costantini, G., & Kern, K. (2005). “Engineering atomic and molecular nanostructures at surfaces”. Nature, 437, 671–679.CrossRefGoogle Scholar
  62. 62.
    Pantazi, A., Sebastian, A., Cherubini, G., Lantz, M., Pozidis, H., Rothuizen, H., et al. (2007). “Control of mems-based scanning-probe data-storage devices”. IEEE Transactions on Control Systems Technology, 15 (5), 824–841.CrossRefGoogle Scholar
  63. 63.
    Pantazi, A., Sebastian, A., Pozidis, H., & Eleftheriou, E. (2005). “Two-sensor-based h control for nanopositioning in probe storage”. IEEE Conference on Decision and Control (pp. 1174–1179). Seville, Spain.Google Scholar
  64. 64.
    Stein, G. (2003). “Respect the unstable”. IEEE Control System Magazine, 23 (4), 12–25.CrossRefGoogle Scholar
  65. 65.
    Isidori, A. (1995). Nonlinear Control Systems (3rd ed.). London: Springer.MATHGoogle Scholar
  66. 66.
    Zou, Q., & Devasia, S. (1999). “Preview-based stable-inversion for output tracking of linear systems”. ASME Journal of Dynamic Systems, Measurement and Control, 121, 625–630.CrossRefGoogle Scholar
  67. 67.
    Zou, Q., & Devasia, S. (2004). “Preview-based optimal inversion for output tracking: Application to scanning tunneling microscopy”. IEEE Transaction on Control Systems Technology, 12, 375–386.CrossRefGoogle Scholar
  68. 68.
    Zou, Q. (2009). “Optimal preview-based stable-inversion for output tracking of nonminimum-phase linear systems”. Automatica, 45, 230–237.MATHCrossRefGoogle Scholar
  69. 69.
    Devasia, S., Chen, D., & Paden, B. (1996). “Nonlinear inversion-based output tracking”. IEEE Transactions on Automatic Control, 41 (7), 930–942.MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Devasia, S., & Paden, B. (1998). “Stable inversion for nonlinear nonminimum phase time-varying systems”. IEEE Transactions on Automatic Control, 43, 283–288.MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Zou, Q., & Devasia, S. (2007). “Preview-based stable-inversion for output tracking of nonlinear nonminimum-phase systems: The VTOL example”. Automatica, 43 (1), 117–127.MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Wu, Y., & Zou, Q. (2009). “Robust inversion-based 2-DOF control design for output tracking: Piezoelectric-actuator example”. IEEE Transactions on Control System Technology, 17, 1069–1082.CrossRefGoogle Scholar
  73. 73.
    Croft, D., McAllister, D., & Devasia, S. (1998). “High-speed scanning of piezo-probes for nano-fabrication”. ASME Journal of Manufacturing Science and Engineering, 120, 617–622.CrossRefGoogle Scholar
  74. 74.
    Helfrich, B. E., Lee, C., Bristow, D. A., Xiao, X. H., Dong, J., Alleyne, A. G., Salapaka, S. M., & Ferreira, P. M. (2010). “Combined h -feedback control and iterative learning control design with application to nanopositioning systems”. IEEE Transactions on Control Systems Technology, 18 (2), 336–351.CrossRefGoogle Scholar
  75. 75.
    Wu, Y., & Zou, Q. (2009). “An iterative based feedforward-feedback control approach to high-speed atomic force microscope imaging”. ASME Journal of Dynamic Systems, Measurement and Control, 131, 061105-1–061105-9.Google Scholar
  76. 76.
    Wu, Y., Zou, Q., & Su, C. (2009). “A current cycle feedback iterative learning control approach for AFM imaging”. IEEE Transactions on Nanotechnology, 8 (4), 515–527.CrossRefGoogle Scholar
  77. 77.
    Kavli, T. (1991). “Frequency domain synthesis of trajectory learning controller for robot manipulators”. Journal of Robotic Systems, 9 (5), 663–680.CrossRefGoogle Scholar
  78. 78.
    Moore, K. L., Dahleh, M., & Bhatacharyya, S. P. (1992). “Iterative learning control: A survey and new results”. Journal of Robotic Systems, 9 (5), 563–594.MATHCrossRefGoogle Scholar
  79. 79.
    Moore, K. L., & Xu, J.-X. (2000). “Special issue on iterative learning control”. International Journal of Control, 73 (10).Google Scholar
  80. 80.
    Ahn, H.-S., Chen, Y., & Moore, K. L. (2007). “Iterative learning control: Brief survey and categorization”. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 37 (6), 1099–1121.CrossRefGoogle Scholar
  81. 81.
    Ghosh, J., & Paden, B. (2002). “A pseudoinverse-based iterative learning control”. IEEE Transactions on Automatic Control, 47, 831–836.MathSciNetCrossRefGoogle Scholar
  82. 82.
    Ghosh, J., & Paden, B. (2000). “Nonlinear repetitive control”. IEEE Transactions on Automatic Control, 45, 949–954.MathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    Ghosh, J., & Paden, B. (1999). “Pseudo-inverse based iterative learning control for nonlinear plants with disturbances”. IEEE Conference on Decision and Control (vol. 11, pp. 5206–5212). Phoenix, AZ.Google Scholar
  84. 84.
    Tien, S., Zou, Q., & Devasia, S. (2004). “Iterative control of dynamics-coupling effects in piezo-based nano-positioners for high-speed AFM”. Proceedings of the 2004 IEEE International Conference on Control Applications (pp. 711–717). Taipei, Taiwan.Google Scholar
  85. 85.
    Kim, K., Zou, Q., & Su, C. (2008). “A new approach to scan-trajectory design and track: AFM force measurement example”. ASME Journal of Dynamic Systems, Measurement and Control, 130, 051005-1–051005-10.Google Scholar
  86. 86.
    Kim, K.-S., & Zou, Q. (2008). “A model-less inversion-based iterative control technique for output tracking: Piezo actuator example”. ACC (pp. 2710–2715). Seattle, WA.Google Scholar
  87. 87.
    Yan, Y., Wang, H., & Zou, Q. (2010). “A decoupled inversion-based iterative control approach to multi-axis precision positioning: 3-d nanopositioning example”. American Control Conference (pp. 1290–1295). Baltimore, MD.Google Scholar
  88. 88.
    Arimoto, S., Kawamura, S., & Miyazaki, F. (1986). “Convergence, stability, and robustness of learning control schemes for robot manipulators”. Proceedings of the International Symposium on Robot Manipulators on Recent Trends in Robotics: Modeling, Control and Education (pp. 307–316). Albuquerque, NM.Google Scholar
  89. 89.
    Xu, Z., Kim, K., Zou, Q., & Shrotriya, P. (2008). “Broadband measurement of ratedependent viscoelasticity at nanoscale using scanning probe microscope: Poly(dimethylsiloxane) example”. Applied Physics Letters, 93 (13), 133103.CrossRefGoogle Scholar
  90. 90.
    Youla, D. C., & Bongiorno, J. J., Jr. (1985). “A feedback theory of two-degree-of-freedom optimal wiener-hopf design”. IEEE Transactions on Automatic Control, 30 (7), 652–665.MathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    Prempain, E., & Postlethwaite, I. (2001). “Feedforward control: A full-information approach”. Automatica, 37 (1), 17–28.MathSciNetMATHCrossRefGoogle Scholar
  92. 92.
    Yaesh, I., & Shaked, U. (1991). “Two-degree-of-freedom h -optimization of multivariable feedback systems”. IEEE Transaction on Automatic Control, 36 (11), 1272–1275.MathSciNetCrossRefGoogle Scholar
  93. 93.
    Schitter, G., Stemmer, A., & Allgower, F. (2004). “Robust two-degree-of-freedom control of an atomic force microscope”. Asian Journal of Control, 6 (2), 156–163.CrossRefGoogle Scholar
  94. 94.
    Lee, C., & Salapaka, S. M. (2009). “Robust broadband nanopositioning: Fundamental trade-offs, analysis, and design in a two-degree-of-freedom control framework”. Nanotechnology, 20 (3), 035501.CrossRefGoogle Scholar
  95. 95.
    Goh, C., & Yan, W. (1996). “An h synthesis of robust current error feedback learning control”. ASME Journal of Dynamic Systems, Measurement and Control, 118, 341–346.MATHCrossRefGoogle Scholar
  96. 96.
    Doh, T.-Y., Moon, J.-H., Jin, K., & Chung, M. (1999). “Robust iterative learning control with current feedback for uncertain linear systems”. International Journal System Science, 30 (1), 39–47.MATHCrossRefGoogle Scholar
  97. 97.
    Owens, D., & Munde, G. (2000). “Error convergence in an adaptive iterative learning controller”. International Journal of Control, 73, 851–857.MathSciNetMATHCrossRefGoogle Scholar
  98. 98.
    Longman, R. (2000). “Iterative learning control and repetitive control for engineering practice”. International Journal of Control, 73 (10), 930–954.MathSciNetMATHCrossRefGoogle Scholar
  99. 99.
    Roover, D. d., & Bosgra, O. (2000). “Synthesis of robust multivariable iterative learning controllers with application to a wafer stage motion system”. International Journal of Control, 73 (10), 968–979.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringRutgers, The State University of New JerseyPiscatawayUSA

Personalised recommendations