Skip to main content

Constraints and Challenges in Tip-Based Nanofabrication

  • Chapter
  • First Online:
Tip-Based Nanofabrication
  • 1167 Accesses

Abstract

In the past decade, tip-based nanofabrication (TBN) has become a powerful technology for nanofabrication due to its low cost and unique atomic-level manipulation capabilities. While a wide range of nanoscale components, devices, and systems have been fabricated by TBN, this technology still faces a number of constraints and challenges, which can be categorized into three areas: repeatability (reliability), ability (feasibility), and productivity (throughput). This chapter reviews these constraints and discusses the challenges for potential approaches to circumventing them. First, the major TBN techniques and their recent advances are reviewed in brief. Then, specific approaches for enhancing its repeatability by using automated equipment, for increasing its ability by seeking strategies to create truly three-dimensional nanostructures, and for improving its productivity by parallel processing, speed increasing, and larger tips, are evaluated. Finally, a preliminary roadmap for the next several years and a recommendation of areas for future research and development are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscope/microscopy

AM:

Atomic manipulation

APTS:

Aminopropyl trimethoxysilane

BPL:

Beam pen lithography

CAD/CAM:

Computer-aided design/computer-aided manufacturing

CNC:

Computer numerical control

DNA:

Deoxyribonucleic acid

DPN:

Dip-pen nanolithography

ECD:

Electrochemical deposition

EFMT:

Electric field-induced mass transfer

FM:

Frequency-modulation

ITRS:

International technology roadmap for semiconductors

KBS:

Knowledge based software

LAO:

Local anodic oxidation

MEMS:

Micro electromechanical system

NFP:

Nanofountain Probes

PCS:

Probe control software

PDMS:

Polydimethylsiloxane

PID:

Proportional-integral-derivative

PMG:

Phenolic molecular glass

RIE:

Reactive ion etch

SAM:

Self-assembled monolayer

SEM:

Scanning electron microscope

SIMS:

Secondary ion mass spectrometry

SNOM:

Scanning near-field optical microscopy

SOI:

Silicon-on-insulator

SPM:

Scanning probe microscopy

SPP:

Surface plasmon polariton

STM:

Scanning tunneling microscopy

TBN:

Tip-based nanofabrication

vdW:

van der Waals

References

  1. H. A. Atwater, The promise of plasmonics, Sci. Am., 296 (4), 56–63 (2007).

    Article  Google Scholar 

  2. V. M. Shalaev, Transforming light, Science, 322, 384–386 (2008).

    Article  Google Scholar 

  3. A. A. Tseng, C. D. Chen, C. S. Wu, R. E. Diaz, M. E. Watts, Electron-beam lithography of microbowtie structures for next generation optical probe, J. Microlith., Microfab. Microsyst., 1, 123–135 (2002).

    Article  Google Scholar 

  4. I. I. Smolyaninov, Y.-J. Hung, C. C. Davis, Magnifying superlens in the visible frequency range, Science, 315, 1699–1701 (2007).

    Article  Google Scholar 

  5. S. Pillai, K. R. Catchpole, T. Trupke, M. A. Green, Surface plasmon enhanced silicon solar cells, J. Appl. Phys., 101, 093105 (2007).

    Article  Google Scholar 

  6. K. Nakayama, K. Tanabe, H. A. Atwater, Plasmonic nanoparticle enhanced light absorption in GaAs solar cells, Appl. Phys. Lett., 93, 121904 (2008).

    Article  Google Scholar 

  7. P. N. Prasad, Nanophotonics, Wiley, New York, 2004.

    Book  Google Scholar 

  8. J. B. Pendry, D. Schurig, D. R. Smith, Controlling electromagnetic fields, Science, 312, 1780–1782 (2006).

    Article  MathSciNet  Google Scholar 

  9. H. Craighead, Future lab-on-a-chip technologies for interrogating individual molecules, Nature, 442, 387–393 (2006).

    Article  Google Scholar 

  10. V. Wagner, A. Dullaart, A.-K. Bock, A. Zweck, The emerging nanomedicine landscape, Nat. Biotechnol., 24, 1211–1217 (2006).

    Article  Google Scholar 

  11. R. A. Freitas, Jr., Current status of nanomedicine and medical nanorobotics, J. Comput. Theor. Nanosci., 2, 1–25 (2005).

    Google Scholar 

  12. The International Technology Roadmap for Semiconductors (ITRS), 2009 ed., http://www.itrs.net/links/2009ITRS/Home2009.htm (2010).

  13. A. A. Tseng, S. Jou, A. Notargiacomo, T. P. Chen, Recent developments in tip-based nanofabrication and its roadmap, J. Nanosci. Nanotechnol., 8, 2167–2186 (2008).

    Article  Google Scholar 

  14. A. A. Tseng, A. Notargiacomo, T. P. Chen, Nanofabrication by scanning probe microscope lithography: a review, J. Vac. Sci. Technol. B, 23, 877 (2005).

    Article  Google Scholar 

  15. K. Salaita, Y. Wang, C. A. Mirkin, Applications of dip-pen nanolithography, Nat. Nanotechnol. 2, 145–155 (2007).

    Article  Google Scholar 

  16. A. A. Tseng, Recent developments in nanofabrication using scanning near-field optical microscope lithography, Optical Laser Technol., 39, 514–526 (2007).

    Article  Google Scholar 

  17. G. Binnig, C. F. Quate, C. Gerber, Atomic force microscope, Phys. Rev. Lett., 56, 930–933 (1986).

    Article  Google Scholar 

  18. A. A. Tseng, L. Pellegrino, J.-I. Shirakashi, Nanofabrication using atomic force microscopy, in Encyclopedia of Nanoscience and Nanotechnology, chapter 287, 2nd ed., by H. S. Nalwa, American Scientific, Valencia, CA, 2012.

    Google Scholar 

  19. A. A. Tseng, Z. Li, Manipulations of atoms and molecules by scanning probe microscopy, J. Nanosci. Nanotechnol., 7, 2582–2595 (2007).

    Article  Google Scholar 

  20. N. Oyabu, Y. Sugimoto, M. Abe, O. Custance, S. Morita, Lateral manipulation of single atoms at semiconductor surfaces using atomic force microscopy, Nanotechnology, 16, S112–S117 (2005).

    Article  Google Scholar 

  21. A. A. Tseng, T.-W. Lee, A. Notargiacomo, T. P. Chen, Formation of uniform nanoscale oxide layers assembled by overlapping oxide lines using atomic force microscopy, J. Micro/Nanolith. MEMS & MOEMS, 8, 043050 (2009).

    Article  Google Scholar 

  22. I. Fernandez-Cuesta, X. Borrise, F. Perez-Murano, Atomic force microscopy local andic oxidation of thin Si3N4 layers for robust prototyping of nanostructures, J. Vac. Sci. Technol. B., 24, 2988 (2006).

    Article  Google Scholar 

  23. A. A. Tseng, J. Shirakashi, S. Nishimura, K. Miyashita, A. Notargiacomo, Scratching properties of nickel-iron thin film and silicon using atomic force microscopy, J. Appl. Phys., 106, 044314 (2009).

    Article  Google Scholar 

  24. D. Pires, J. L. Hedrick, A. De Silva, J. Frommer, B. Gotsmann, H. Wolf, M. Despont, U. Duerig, A. W. Knoll, Nanoscale three-dimensional patterning of molecular resists by scanning probes, Science, 328, 732–735 (2010).

    Article  Google Scholar 

  25. A. W. Knoll, D. Pires, O. Coulembier, P. Dubois, J. L. Hedrick, J. Frommer, U. Duerig, Probe-based 3-D nanolithography using self-amplified depolymerization polymers, Adv. Mater., 22, 3361–3365 (2010).

    Article  Google Scholar 

  26. M. Calleja, M. Tello, J. Anguita, F. García, R. García, Fabrication of gold nanowires on insulting substrates by field-induced mass transport, Appl. Phys. Lett., 79, 2471 (2001).

    Article  Google Scholar 

  27. G. Agarwal, R. R. Naik, M. O. Stone, Immobilization of histidine tagged proteins on nickel by electrochemical dip pen nanolithography, J. Am. Chem. Soc., 125, 7408–7412 (2003).

    Article  Google Scholar 

  28. C. J. Chen, Introduction to Scanning Tunneling Microscopy, 2nd ed., Oxford University, New York, NY, 2008.

    Google Scholar 

  29. O. Custance, R. Perez, S. Morita, Atomic force microscopy as a tool for atom manipulation, Nat. Nanotechnol., 4, 803–810 (2009).

    Article  Google Scholar 

  30. M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl, A. J. Heinrich, The force needed to move an atom on a surface, Science, 319, 1066–1069 (2008).

    Article  Google Scholar 

  31. K. H. Kim, N. Moldovan, H. D. Espinosa, A nanofountain probe with sub-100 nm molecular writing resolution, Small, 1, 632–635 (2005).

    Article  Google Scholar 

  32. L. Huang, A. B. Braunschweig, W. Shim, L. Qin, J. K. Lim, Matrix-assisted dip-pen nanolithography and polymer pen lithography, Small, 6, 1077–1081 (2010).

    Article  Google Scholar 

  33. S. S. Choi, J. T. Ok, D. W. Kim, M. Y. Jung, M. J. Park, Modeling of a nanoscale oxide aperture opening for a NSOM probe, J. Kor. Phys. Soc. 45, 1659–1663 (2004).

    Google Scholar 

  34. Y. Zhang, K. E. Docherty, J. M. R. Weave, Batch fabrication of cantilever array aperture probes for scanning near-field optical microscopy, Microelectronic Eng., 87, 1229–1232 (2010).

    Article  Google Scholar 

  35. E. ul Haq, Z. Liu, Y. Zhang, S. A. A. Ahmad, L.-S. Wong, S. P. Armes, J. K. Hobbs, G. J. Leggett, J. Micklefield, C. J. Roberts, J. M. R. Weaver, Parallel scanning near-field photolithography: the Snomipede, Nano Lett., 10, 4375–4380 (2010).

    Article  Google Scholar 

  36. F. Huo, G. Zheng, X. Liao, L. R. Giam, J. Chai, X. Chen, W. Shim, C. A. Mirkin, Beam pen lithography, Nat. Nanotechnol., 5, 637–640 (2010).

    Article  Google Scholar 

  37. B. A. Nelson, W. P. King, A. R. Laracuente, P. E. Sheehan, L. J. Whitman, Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography, Appl. Phys. Lett., 88, 033104 (2006).

    Article  Google Scholar 

  38. S. Jegadesan, P. Taranekar, S. Sindhu, R. C. Advincula S. Valiyaveettil, Electrochemically nanopatterned conducting coronas of a conjugated polymer precursor: SPM parameters and polymer composition, Langmuir, 22, 3807–3811 (2006).

    Article  Google Scholar 

  39. S. S. Aphale, B. Bhikkaji, S. O. R. Moheimani, Minimizing scanning errors in piezoelectric stack-actuated nanopositioning platforms, IEEE Trans. Nanotechnol., 7, 79–90 (2008).

    Article  Google Scholar 

  40. I. Mayergoyz, Mathematical Models of Hysteresis, Springer, New York, NY 1991.

    MATH  Google Scholar 

  41. E. Meyer, H. J. Hug, R. Bennewitz, Scanning Probe Microscopy, Springer, Heidelberg, Germany, 2004.

    Google Scholar 

  42. B. Mokaberi, A. G. Requicha, Drift compensation for automatic nanomanipulation with scanning probe microscopes, IEEE Trans. Autom. Sci. Eng., 3, 3 (2006).

    Article  Google Scholar 

  43. A. J. Fleming, K. K. Leang, Charge drives for scanning probe microscope positioning stages, Ultramicroscopy, 108, 1551–1557 (2008).

    Article  Google Scholar 

  44. I. A. Mahmood, S. O. R. Moheimani, Making a commercial atomic force microscope more accurate and faster using positive position feedback control, Rev. Sci. Instrum., 80, 063705 (2009).

    Article  Google Scholar 

  45. S. O. R. Moheimani, Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges, Rev. Sci. Instrum., 79, 071101 (2008).

    Article  Google Scholar 

  46. H. Kuramoch, K. Ando, T. Tokizaki, M. Yasutake, F. Perez-Murano, J. A. Dagata, H. Yokoyama, Large scale high precision nano-oxidation using an atomic force microscope, Surf. Sci., 566–568, 343–348 (2004).

    Article  Google Scholar 

  47. B. Bhikkaji, M. Ratnam, A. J. Fleming, S. O. R. Moheimani, IEEE Trans. Control Syst. Technol., 5, 853(2007).

    Article  Google Scholar 

  48. Y. Yan, Q. Zou, Z. Lin, A control approach to high-speed probe-based nanofabrication, Nanotechnology, 20, 175301(2009).

    Article  Google Scholar 

  49. P. Zahl, M. Bierkandt, S. Schröder, A. Klust, The flexible and modern open source scanning probe microscopy software package GXSM, Rev. Sci. Instrum., 74, 1222 (2003).

    Article  Google Scholar 

  50. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A. M. Baro, WSXM: a software for scanning probe microscopy and a tool for nanotechnology, Rev. Sci. Instrum., 78, 013705 (2007).

    Article  Google Scholar 

  51. S. Cruchon-Dupeyrat, S. Porthun, G.-Y. Liu, Nanofabrication using computer-assisted design and automated vector-scanning probe lithography, Appl. Surf. Sci., 175–176, 636–642 (2001).

    Article  Google Scholar 

  52. M. S. Johannes, J. F. Kuniholm, D. G. Cole, R. L. Clark, Automated CAD/CAM-based nanolithography using a custom atomic force microscope, IEEE Trans. Autom. Sci. Eng., 3, 236–239 (2006).

    Article  Google Scholar 

  53. B. Mokaberi, A. A. G. Requicha, Drift compensation for automatic nanomanipulation with scanning probe microscopes, IEEE Trans. Autom. Sci. Eng., 3, 199–207 (2006).

    Article  Google Scholar 

  54. A. A. G. Requicha, D. J. Arbuckle, B. Mokaberi, J. Yun, Algorithms and software for nanomanipulation with atomic force microscopes, Int. J. Robotics Res., 28, 512–522 (2009).

    Article  Google Scholar 

  55. R. Resch, C. Baur, A. Bugacov, B. E. Koel, A. Madhukar, A. A. G. Requicha, P. Will, Building and manipulating three-dimensional and linked two-dimensional structures of nanoparticles using scanning force microscopy, Langmuir, 14, 6613–6616 (1998).

    Article  Google Scholar 

  56. R. Nishi, D. Miyagawa, Y. Seino, I. Yi, S. Morita, Non-contact atomic force microscopy study of atomic manipulation on an insulator surface by nanoindentation, Nanotechnology, 17, S142–S147 (2006).

    Article  Google Scholar 

  57. W. Zhao, K. Xu, X. Qian, R. Wang, Tip based nanomanipulation through successive directional push, ASME J. Manuf. Sci. Eng., 132, 0309091 (2010).

    Google Scholar 

  58. T. Robinson, A. Dinsdale, M. Archuletta, R. Bozak, R. White, Nanomachining photomask repair of complex patterns, in Photomask Technology 2008, Proceedings of SPIE, Vol. 7122, The International Society for Optical Engineering, 2008.

    Google Scholar 

  59. V. K. Parashar, A. Sayah, M. Pfeffer, F. Schoch, J. Gobrecht, M. A. M. Gijs, Nano-replication of diffractive optical elements in sol-gel derived glasses, Microelectronic Eng., 67–68, 710–719 (2003).

    Article  Google Scholar 

  60. A. A. Tseng, Recent developments in micromachining of fused silica and quartz using excimer lasers, Phys. Status Solidi A, 204, 709–729 (2007).

    Article  Google Scholar 

  61. T. G. Leong, A. M. Zarafshar, D. H. Gracias, Three-dimensional fabrication at small size scales, Small, 6, 792–806 (2010).

    Article  Google Scholar 

  62. Y. Yan, T. Sun, Y. Liang, S. Dong, Investigation on AFM-based micro/nano-CNC machining system, Int. J. Mach. Tools Manuf., 47, 1651–1659 (2007).

    Article  Google Scholar 

  63. A. A. Tseng, M. Tanaka, Advanced deposition techniques for freeform fabrication of metal and ceramic parts, Rapid Prototyping J., 7, 6–17 (2001).

    Article  Google Scholar 

  64. K. Bourne, S. G. Kapoor, R. E. DeVor, Study of a high performance AFM probe-based microscribing process, ASME J. Manuf. Sci. Eng., 132, 030906 (2010).

    Article  Google Scholar 

  65. I. Fernandez-Cuesta, X. Borrise, F. Perez-Murano, Atomic force microscopy local oxidation of silicon nitride thin films for mask fabrication, Nanotechnology, 16, 2731–2737 (2005).

    Article  Google Scholar 

  66. C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, S. Gwo, Silicon microlens structures fabricated by scanning-probe gray-scale oxidation, Opt. Lett., 30, 652–654 (2005).

    Article  Google Scholar 

  67. P. K. Hansma, J. Tersoff, Scanning tunneling microscopy, J. Appl. Phys., 61, R1–R23 (1987).

    Article  Google Scholar 

  68. D. M. Eigler, E. K. Schweizer, Positioning single atoms with a scanning tunnelling microscope, Nature, 344, 524–526 (1990).

    Article  Google Scholar 

  69. K.-H. Rieder, G. Meyer, F. Moresco, K. Morgenstern, S.-W. Hla, J. Repp, M. Alemani, L. Grill, L. Gross, M. Mehlhorn, H. Gawronski, V. Simic-Milosevich, J. Henzl, K. F. Braun, S. Foelsch, L. Bartels, Force induced and electron stimulated STM manipulations: routes to artificial nanostructures as well as to molecular contacts, engines and switches, J. Phys.: Conf. Series, 19, 175 (2005).

    Article  Google Scholar 

  70. V. Iancu, A. Deshpande, S.-W. Hla, Manipulating Kondo temperature via single molecule switching, Nano Lett., 6, 820–823 (2006).

    Article  Google Scholar 

  71. L. Grill, F. Moresco, Contacting single molecules to metallic electrodes by scanning tunnelling microscope manipulation: model systems for molecular electronics, J. Phys. Condens. Matter., 18, S1887–S1908 (2006).

    Article  Google Scholar 

  72. F. London, Zur Theorie und Systematik der Molekularkrafte (On the theory and systematic of the molecular forces), Z. Phys, 63, 245–279 (1930).

    Article  Google Scholar 

  73. J. N. Israelachvilli, Intermolecular and Surface Forces, 2nd ed., Academic, London, 1991.

    Google Scholar 

  74. M. N. Magomedov, The calculation of the parameters of the Mie–Lennard-Jones potential, High Temperature, 44, 513–529 (2006) (Translated from Teplofizika Vysokikh Temperatur, 44, 518–533, 2006).

    Article  Google Scholar 

  75. A. A. Tseng, Atomic interactions in nanofabrication, J. Nanoscience and Nanotechnology, (in press).

    Google Scholar 

  76. S. Morita, H. Yamada, T. Ando, Japan AFM roadmap 2006, Nanotechnology, 18, 084001 (2007).

    Article  Google Scholar 

  77. S. W. Chung, A. D. Presley, S. Elhadj, S. Hok, S. S. Hah, A. A. Chernov, M. B. Francis, B. E. Eaton, D. L. Feldheim, J. J. Deyoreo, Scanning probe-based fabrication of 3D nanostructures via affinity templates, functional RNA, and meniscus-mediated surface remodeling, Scanning, 30, 159–171 (2008).

    Article  Google Scholar 

  78. D. Kim, N. K. Chung, J. S. Kim, J. W. Park, Immobilizing a single DNA molecule at the apex of AFM tips through picking and ligation, Soft Matter, 6, 3979–3984 (2010).

    Article  Google Scholar 

  79. J. Hu, Y. Zhang, H. B. Gao, M. Q. Li, U. Hartmann, Artificial DNA patterns by mechanical nanomanipulation, Nano Lett., 2, 55–57 (2002).

    Article  Google Scholar 

  80. C. Santschi, J. Polesel-Maris, J. Brugger, H. Heinzelmann, Scanning probe arrays for nanoscale imaging, sensing and modification, in Nanofabrication: Fundamentals and Applications, ed. by A. A. Tseng, pp. 65–126, World Scientific, Singapore, 2008.

    Chapter  Google Scholar 

  81. K. Ashida, N. Morita, Y. Yoshida, Study on nano-machining process using mechanism of a friction force microscope, JSME Int. J. Ser. C, 44, 244–253 (2001).

    Article  Google Scholar 

  82. N. Kawasegi, N. Takano, D. Oka, N. Morita, S. Yamada, K. Kanda, S. Takano, T. Obata, K. Ashida, Nanomachining of silicon surface using atomic force microscope with diamond tip, ASME J. Manuf. Sci. Eng., 128, 723–729 (2006).

    Article  Google Scholar 

  83. R. Szoszkiewicz, T. Okada, S. C. Jones, T. D. Li, W. P. King, S. R. Marder, E. Riedo, High-speed, sub-15 nm feature size thermochemical nanolithography, Nano Lett., 7, 1064–1069 (2007).

    Article  Google Scholar 

  84. B. W. Chui, T. D. Stowe, Y. S. Ju, K. E. Goodson, T. W. Kenny, H. J. Mamin, B. D. Terris, R. P. Ried, D. Rugar, Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage, IEEE J. Microelectromech. Syst., 7, 69–78 (1998).

    Article  Google Scholar 

  85. D. W. Lee, T. Ono, M. Esashi, Electrical and thermal recording techniques using a heater integrated microprobe, J. Micromech. Microeng., 12, 841–848 (2002).

    Article  Google Scholar 

  86. C. H. Chiou, S. J. Chang, G. B. Lee, H. H. Lee, New fabrication process for monolithic probes with integrated heaters for nanothermal machining, Jpn. J. Appl. Phys., Part 1, 45, 208–214 (2006).

    Article  Google Scholar 

  87. H. Taha, R. S. Marks, L. A. Gheber, I. Rousso, J. Newman, C. Sukenik, A. Lewis, Protein printing with an atomic force sensing nanofountain pen, Appl. Phys. Lett., 83, 1041 (2003).

    Article  Google Scholar 

  88. A. Meister, S. Jeney, M. Liley, T. Akiyama, U. Staufer, N. F. de Rooij, H. Heizelmann, Nanoscale dispensing of liquids through cantileverd probes, Microelectron. Eng., 67–68, 644–650 (2003).

    Article  Google Scholar 

  89. Y. Wang, Y.-Y. Huang, X. Zhang, Plasmonic nanograting tip design for high power throughput near-field scanning aperture probe, Opt. Express, 18, 14004–14011 (2010).

    Article  Google Scholar 

  90. K. Takami, M. Akai-Kasaya, A. Saito, M. Aono, Y. Kuwahara, Construction of independently driven double-tip scanning tunneling microscope, Jpn. J. Appl. Phys. Part 2, 44, L120–L122 (2005).

    Article  Google Scholar 

  91. X. F. Wang, C. Liu, Multifunctional probe array for nano patterning and imaging, Nano Lett., 5, 1867–1872 (2005).

    Article  Google Scholar 

  92. S. C. Minne, J. D. Adams, G. Yaralioglu, S. R. Manalis, A. Atalar, C. F. Quate, Centimeter scale atomic force microscope imaging and lithography, Appl. Phys. Lett., 73, 1742–1744 (1998).

    Article  Google Scholar 

  93. P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, M. A. Lantz, H. E. Rothuizen, R. Stutz, G. K. Binnig, The “millipede”-nanotechnology entering data storage, IEEE Trans. Nanotechnol., 1, 39–54 (2002).

    Article  Google Scholar 

  94. H. Pozidis, W. Haberle, D. Wiesmann, U. Drechsler, M. Despont, T. R. Albrecht, E. Eleftheriou, Demonstration of thermomechanical recording at 641 Gbit/in2, IEEE Trans. Magn., 40, 2531–2536 (2004).

    Article  Google Scholar 

  95. Y. Rosenwaks, D. Dahan, M. Molotskii, G. Rosenman, Ferroelectric domain engineering using atomic force microscopy tip arrays in the domain breakdown regime, Appl. Phys. Lett., 86, 012909 (2005).

    Article  Google Scholar 

  96. C. Hagleitner, T. Bonaccio, H. Rothuizen, J. Lienemann, D. Wiesmann, G. Cherubini, J. G. Korvink, E. Eleftheriou, Modeling, design, and verification for the analog front-end of a MEMS-based parallel scanning-probe storage device, IEEE J. Solid-State Circuit., 42, 1779–1789 (2007).

    Article  Google Scholar 

  97. J. P. Yang, J. Q. Mou, N. B. Chong, Y. Lu, H. Zhu, Q. Jiang, W. G. Kim, J. Chen, G. X. Guo, E. H. Ong, Probe recording technology using novel MEMS devices, Microsyst. Technol. 13, 733–740 (2007).

    Article  Google Scholar 

  98. A. Chad, C. A. Mirkin, Development of massively parallel dip-pen nanolithography, ACS Nano, 1, 79–83 (2007).

    Article  Google Scholar 

  99. K. Salaita, Y. Wang, J. Fragala, R. A. Vega, C. Liu, C. A. Mirkin, Massively parallel dip–pen nanolithography with 55,000-pen two-dimensional arrays, Angewandte Chemie Inter. Ed., 45, 7220 (2006).

    Article  Google Scholar 

  100. D. Bullen, C. Liu, Electrostatically actuated dip pen nanolithography probe arrays, Sens. Actuators A Physical, 125, 504–511 (2006).

    Article  Google Scholar 

  101. G. M. Clayton, S. Tien, K. K. Leang, Q. Zou, S. Devasia, A review of feedforward control approaches in nanopositioning for high-speed SPM, ASME J. Dyn. Syst., Meas. Control, 131, 061101 (2009).

    Article  Google Scholar 

  102. N. Kodera, M. Sakashita, T. Ando, A dynamic PID controller for high-speed atomic force microscopy, Rev. Sci. Instrum., 77, 083704 (2006).

    Article  Google Scholar 

  103. A. D. L. Humphris, M. J. Miles, J. K. Hobbs, A mechanical microscope: high-speed atomic force microscopy, Appl. Phys. Lett., 86, 034106 (2005).

    Article  Google Scholar 

  104. L. M. Picco, L. Bozec, A. Ulcinas, D. J. Engledew, M. Antognozzi, M. A. Horton, M. J. Miles, Breaking the speed limit with atomic force microscopy, Nanotechnology, 18, 044030 (2007).

    Article  Google Scholar 

  105. G. E. Fantner, G. Schitter, J. H. Kindt, T. Ivanov, K. Ivanova, R. Patel, N. H. Anderson, J. Adams, P. J. Thurner, I. W. Rangelow, P. K. Hansma, Components for high speed atomic force microscopy, Ultramicroscopy, 106, 881–887 (2006).

    Article  Google Scholar 

  106. N. Kodera, H. Yamashita, T. Ando, Active damping of the scanner for high-speed atomic force microscopy, Rev. Sci. Instrum., 76, 053708 (2005).

    Article  Google Scholar 

  107. A. Mahmood, S. O. R. Moheimani, Fast spiral-scan atomic force microscopy, Nanotechnology, 20, 365503 (2009).

    Article  Google Scholar 

  108. S.-K. Hung, Spiral scanning method for atomic force microscopy, J. Nanosci. Nanotechnol., 10, 4511–4516 (2010).

    Article  Google Scholar 

  109. D. M. Carberry, L. Picco, P. G. Dunton, M. J. Miles, Mapping real-time images of high-speed AFM using multitouch control, Nanotechnology, 20, 434018 (2009).

    Article  Google Scholar 

  110. S. R. Manalis, S. C. Minne, A. Atalar, C. F. Quate, High-speed atomic force microscopy using an integrated actuator and optical lever detection, Rev. Sci. Instrum., 67, 3294–3297 (1996).

    Article  Google Scholar 

  111. F. Dinelli, C. Menozzi, P. Baschieri, P. Facci, P. Pingue, Scanning probe nanoimprint lithography, Nanotechnology, 21, 075305 (2010).

    Article  Google Scholar 

  112. J.-I. Shirakashi, Scanning probe microscope lithography at the micro- and nano-scales, J. Nanosci. Nanotechnol., 10, 4486–4494 (2010).

    Article  Google Scholar 

  113. S. Hoeppener, R. Maoz, J. Sagiv, Constructive micolithography: electrochemical priting of monolayer template patterns extends constrictive nanolithography to the micrometer-millimeter dimension range, Nano Lett., 3, 761–767 (2003).

    Article  Google Scholar 

  114. M. Cavallini, P. Mei, F. Biscarini, R. Garcia, Parallel writing by local oxidation nanolithography with submicrometer reslution, Appl. Phys. Lett., 83, 5286 (2003).

    Article  Google Scholar 

  115. N. Farkas, R. D. Ramsier, J. A. Dagata, High-voltage nanoimprint lithography of refractory metal films, J. Nanosci. Nanotechnol., 10, 4423–4433 (2010).

    Article  Google Scholar 

  116. A. A. Tseng, Multi-head atomic force fabricator, US patent pending.

    Google Scholar 

  117. T. W. Kenny, Tip-Based Nanofabrication (TBN), BAA No. 07-59, US Defense Advanced Research Projects Agency, Arlington, VA, 2007.

    Google Scholar 

  118. UT-Battelle, Productive Nanosystems, a Technology Roadmap, Battelle Memorial Institute and Foresight Nanotech Institute (2007).

    Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the support of Pacific Technology, LLC of Phoenix (USA) and the National Science Council (ROC) under Grant No. NSC99-2811-E-007-014 in funding a University Chair professorship at National Tsing Hua University (NTHU) in Hsinchu, Taiwan, where the author spent a semester in preparation of this manuscript in 2010. The author is grateful to Professors Wen-Hwa Chen, Hung Hocheng, and Chien-Chung Fu of NTHU for their hospitality and encouragement during the author’s stay in Hsinchu. Very special thanks are to Professor Jun-ichi Shirakashi of Tokyo University of Agriculture and Technology (Japan), Dr. Andrea Notargiacomo of CNR-IFN (Italy), Dr. Luca Pellegrino of CNR-SPIN (Italy), Professor Thomas W. Kenny of Stanford University (USA), Professor Ari Requicha of the University of Southern California (USA) and Dr. John Dagata of National Institute of Standards and Technology (USA) for their useful information and fruitful discussions.  The author is thankful for the assistance provided by Ms Yu-Shan Huang and Mr. Gwo J. Wu of NTHU in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ampere A. Tseng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tseng, A.A. (2011). Constraints and Challenges in Tip-Based Nanofabrication. In: Tseng, A. (eds) Tip-Based Nanofabrication. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9899-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9899-6_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9898-9

  • Online ISBN: 978-1-4419-9899-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics