Skip to main content

Nanoscale Scratching with Single and Dual Sources Using Atomic Force Microscopes

  • Chapter
  • First Online:

Abstract

AFM (atomic force microscope) scratching is a simple yet versatile material removing technique for nanofabrication. It has evolved from a purely mechanical process to one in which the tip can be loaded by additional energy sources, such as thermal, electric, or chemical. In this chapter, scratching techniques using tips with both single and dual sources are reviewed with an emphasis on associated material removing behavior. Recent developments in scratching systems equipped with automated stages or platforms using both single tip and multiple tips are assessed. The characteristics of various approaches for scratching different types of materials, including polymers, metals, and semiconductors, are presented and evaluated. The effects of the major scratching parameters on the final nanostructures are reviewed with the goal of providing quantitative information for guiding the scratching process. Advances in several techniques using dual sources for AFM scratching are then studied with a focus on their versatility and potential for different applications. Finally, following a section on the applications of AFM scratching for fabricating a fairly wide range of nanoscale devices and systems, concluding remarks are presented to recommend subjects for future technological improvement and research emphasis, as well as to provide the author’s perspective on future challenges in the field of AFM scratching.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AE:

Acoustic emission

AFM:

Atomic force microscope/microscopy

CNT:

Carbon nanotubes

DA:

Diels–Alder

EBD:

Electron beam induced deposition

ECM:

Electrochemical nanomachining

FET:

Field effect transistor

FWHM:

Full width at half maximum

GO:

Graphene oxide

KOH:

Potassium hydroxide

LAO:

Local anodic oxidation

PC:

Polycarbonate or personal computer

PDMS:

Polydimethylsiloxane

PGMA:

Polyglycidyl-methacrylate

PMMA:

Polymethylmethacrylate

PNBA:

Poly(n-butyl acrylate)

PNIPAM:

Poly(n-isopropylacrylamide)

PS:

Polystyrene

R2 :

Coefficient of determination

SAD:

Self-amplified depolymerization

SAM:

Self-assembled monolayer

SD:

Standard deviation

SEM:

Scanning electron microscope

SIMS:

Secondary ion mass spectrometry

SNOM:

Scanning near-field optical microscopy

SOI:

Silicon on insulator

SPDT:

Single point diamond tools

SPM:

Scanning probe microscopy

SQUID:

Superconducting quantum interference device

SR:

Scratch ratio

STM:

Scanning tunneling microscopy

TCNL:

Thermochemical nanolithography

TEM:

Transmission electron microscopy

TMNL:

Thermomechanical nanolithography

USD:

Unit scratch depth

1DES:

One-dimensional electron system

2DEG:

Two-dimensional electron gas

References

  1. G. Binnig, C. F. Quate, C. Gerber, Atomic force microscope, Phys. Rev. Lett., 56, 930 (1986).

    Google Scholar 

  2. A. A. Tseng, A. Notargiacomo, T. P. Chen, Nanofabrication by scanning probe microscope lithography: a review, J. Vac. Sci. Technol. B, 23, 877–894 (2005).

    Google Scholar 

  3. A. A. Tseng, S. Jou, A. Notargiacomo, T. P. Chen, Recent developments in tip-based nanofabrication and its roadmap, Nanosci. Nanotechnol., 8, 2167 (2008).

    Google Scholar 

  4. Y. Kim, C. M. Lieber, Machining oxide thin films with an atomic force microscope: pattern and object formation on the nanometer scale, Science, 257, 375–377 (1992).

    Google Scholar 

  5. A. A. Tseng, A comparison study of scratch and wear properties using atomic force microscopy, Appl. Surf. Sci., 256, 4246–4252 (2010).

    Google Scholar 

  6. Y. Yan, T. Sun, Y. Liang, S. Dong, Investigation on AFM-based micro/nano-CNC machining system, Int. J. Mach. Tools Manuf., 47, 1651–1659 (2007).

    Google Scholar 

  7. A. W. Knoll, D. Pires, O. Coulembier, P. Dubois, J. L. Hedrick, J. Frommer, U. Duerig, Probe-based 3-D nanolithography using self-amplified depolymerization polymers, Adv. Mater., 22, 3361–3365 (2010).

    Google Scholar 

  8. A. A. Tseng, Recent developments in nanofabrication using scanning near-field optical microscope lithography, Opt. Laser Technol., 39, 514 (2007)

    Google Scholar 

  9. C. Santschi, J. Polesel-Maris, J. Brugger, H. Heinzelmann, Scanning probe arrays for nanoscale imaging, sensing and modification, in Nanofabrication: Fundamentals and Applications, A. A. Tseng (Ed.), 65–126, World Scientific, Singapore, 2008.

    Google Scholar 

  10. U. Kunze, Nanoscale devices fabricated by dynamic ploughing with an atomic force microscope, Superlatt. Microstruct., 31, 3–17 (2002).

    MathSciNet  Google Scholar 

  11. C. K. Hyon, S. C. Choi, S. W. Hwang, D. Ahn, Y. Kim, E. K. Kim, Nano-structure fabrication and manipulation by the cantilever oscillation of an atomic force microscope, Jpn. J. Appl. Phys., 38, 7257–7259 (1999).

    Google Scholar 

  12. K. Ashida, N. Morita, Y. Yoshida, Study on nano-machining process using mechanism of a friction force microscope, JSME Int. J. Ser. C, 44, 244–253 (2001).

    Google Scholar 

  13. N. Kawasegi, N. Takano, D. Oka, N. Morita, S. Yamada, K. Kanda, S. Takano, T. Obata, K. Ashida, Nanomachining of silicon surface using atomic force microscope with diamond tip, ASME J. Manuf. Sci. Eng., 128, 723–729 (2006).

    Google Scholar 

  14. N. Kodera, M. Sakashita, T. Ando, A dynamic PID controller for high-speed atomic force microscopy, Rev. Sci. Instrum., 77, 083704 (2006).

    Google Scholar 

  15. A. D. L. Humphris, M. J. Miles, J. K. Hobbs, A mechanical microscope: high-speed atomic force microscopy, Appl. Phys. Lett., 86, 034106 (2005).

    Google Scholar 

  16. L. M. Picco, L. Bozec, A. Ulcinas, D. J. Engledew, M. Antognozzi, M. A. Horton, M. J. Miles, Breaking the speed limit with atomic force microscopy, Nanotechnology, 18, 044030 (2007).

    Google Scholar 

  17. J. H. Hafner, C. L. Cheung, T. H. Oosterkamp, C. M. Lieber, High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies, J. Phys. Chem. B, 105, 743–746 (2001).

    Google Scholar 

  18. C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim, C. M. Lieber, Growth and fabrication with single-walled carbon nanotube probe microscopy tips, Appl. Phys. Lett., 76, 3136–3138 (2000).

    Google Scholar 

  19. K. Takami, M. Akai-Kasaya, A. Saito, M. Aono, Y. Kuwahara, Construction of independently driven double-tip scanning tunneling microscope, Jpn. J. Appl. Phys. Part 2, 44, L120 (2005).

    Google Scholar 

  20. X. F. Wang, C. Liu, Multifunctional probe array for nano patterning and imaging, Nano Lett., 5, 1867–1872 (2005).

    Google Scholar 

  21. S. C. Minne, J. D. Adams, G. Yaralioglu, S. R. Manalis, A. Atalar, C. F. Quate, Centimeter scale atomic force microscope imaging and lithography, Appl. Phys. Lett., 73, 1742 (1998).

    Google Scholar 

  22. P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, M. A. Lantz, H. E. Rothuizen, R. Stutz, G. K. Binnig, The “millipede”-nanotechnology entering data storage, IEEE Trans. Nanotechnol., 1, 39–54 (2002).

    Google Scholar 

  23. H. Pozidis, W. Haberle, D. Wiesmann, U. Drechsler, M. Despont, T. R. Albrecht, E. Eleftheriou, Demonstration of thermomechanical recording at 641 Gbit/in2, IEEE Trans. Magn., 40, 2531–2536 (2004).

    Google Scholar 

  24. B. W. Ahn, S. H. Lee, Characterization and acoustic emission monitoring of AFM nanomachining, J. Micromech. Microeng., 19, 045028 (2009).

    Google Scholar 

  25. H. Chiriac, M. Pletea, E. Hristoforou, Magnetoelastic characterization of thin films dedicated to magnetomechanical microsensor applications, Sens. Actuators A-Phys., 68 (1–3), 414–418 (1998).

    Google Scholar 

  26. T. Takezaki, D. Yagisawa, K. Sueoka, Magnetic field measurement using scanning magneto resistance microscope with spin-valve sensor, Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications & Review Papers, 45, 2251–2254 (2006).

    Google Scholar 

  27. E. Gmelin, R. Fischer, R. Stitzinger, Sub-micrometer thermal physics – An overview on SThM techniques, Thermochim. Acta, 310, 1–17 (1998).

    Google Scholar 

  28. A. J. Bard, F. R. F. Fan, J. Kwak, O. Lev, Scanning electrochemical microscopy – introduction and principles, Anal. Chem., 61, 132–138 (1989).

    Google Scholar 

  29. G. Boero, I. Utke, T. Bret, N. Quack, M. Todorova, S. Mouaziz, P. Kejik, J. Brugger, R. S. Popovic, P. Hoffmann, Submicrometer Hall devices fabricated by focused electron-beam-induced deposition, Appl. Phys. Lett., 86, 042503 (2005).

    Google Scholar 

  30. A. J. Brook, S. J. Bending, J. Pinto, A. Oral, D. Ritchie, H. Beere, M. Henini, A. Springthorpe, Integrated piezoresistive sensors for atomic force-guided scanning Hall probe microscopy, Appl. Phys. Lett., 82, 3538–3540 (2003).

    Google Scholar 

  31. S. Koshimizu, J. Otsuka, Detection of ductile to brittle transition in micro indentation and micro scratching of single crystal silicon using acoustic emission, J. Mach. Sci. Technol., 5, 101–114 (2001).

    Google Scholar 

  32. D. E. Lee, I. Hwang, C. M. Valente, J. F. Oliveira, D. A. Dornfeld, Precision manufacturing process monitoring with acoustic emission, Int. J. Mach. Tools Manuf., 46, 176–188 (2006).

    Google Scholar 

  33. L. Zhang, H. Tanaka, Towards a deeper understanding of wear and friction on the atomic scale-a molecular dynamics analysis, Wear, 211, 44–53 (1997).

    Google Scholar 

  34. A. A. Tseng, S. Jou, J. C. Huang, J. Shirakashi, T. P. Chen, Scratch properties of nickel thin films using atomic force microscopy, J. Vac. Sci. Technol. B, 28, 202–210 (2010).

    Google Scholar 

  35. M. Chandross, C. D. Lorenz, M. J. Stevens, G. S. Grest, Probe-tip induced damage in compliant substrates, ASME J. Manuf. Sci Eng., 132, 0309161-0309164 (2010).

    Google Scholar 

  36. S. Kassavetis, K. Mitsakakis, S. Logothetidis, Nanoscale patterning and deformation of soft matter by scanning probe microscopy, Mater. Sci. Eng. C, 27, 1456–1460 (2007).

    Google Scholar 

  37. A. A. Tseng, J. Shirakashi, S. Nishimura, K. Miyashita, Z. Li, Nanomachining of permalloy for fabricating nanoscale ferromagnetic structures using atomic force microscopy, J. Nanosci. Nanotechnol., 10, 456–466 (2010).

    Google Scholar 

  38. H. J. Mamin, Thermal writing using a heated atomic force microscope tip, Appl. Phys. Lett., 69, 433 (1996).

    Google Scholar 

  39. S. McNamara, A. S. Basu, J. Lee, Y. B. Gianchandani, Ultracompliant thermal probe array for scanning non-planar surfaces without force feedback, J. Micromech. Microeng., 15, 237–243 (2005).

    Google Scholar 

  40. H. J. Mamin, B. A. Gurney, D. R. Wilhoit, V. S. Speriosu, High sensitivity spin-valve strain sensor, Appl. Phys. Lett., 72, 3220–3222 (1998).

    Google Scholar 

  41. B. A. Gozen, O. B. Ozdoganlar, A rotating-tip-based mechanical nano-manufacturing process: nanomilling, Nanoscale Res. Lett., 5, 1403–1407 (2010).

    Google Scholar 

  42. I. A. Mahmood, S. O. R. Moheimani, Fast spiral-scan atomic force microscopy, Nanotechnology, 20, 365503 (2009).

    Google Scholar 

  43. S. K. Hung, Spiral scanning method for atomic force microscopy, J. Nanosci. Nanotechnol., 10, 4511–4516 (2010).

    Google Scholar 

  44. Y. W. Kim, S. C. Choi, J. W. Park, D. W. Lee, The characteristics of machined surface controlled by multi tip arrayed tool and high speed spindle, J. Nanosci. Nanotechnol., 10, 4417–4422 (2010).

    Google Scholar 

  45. A.A. Tseng, M. Tanaka, Advanced deposition techniques for freeform fabrication of metal and ceramic parts, Rapid Prototyping J., 7, 6–17 (2001).

    Google Scholar 

  46. D. Pires, J. L. Hedrick, A. De Silva, J. Frommer, B. Gotsmann, H. Wolf, M. Despont, U. Duerig, A. W. Knoll, Nanoscale three-dimensional patterning of molecular resists by scanning probes, Science, 328, 732–735 (2010).

    Google Scholar 

  47. K. Bourne, S. G. Kapoor, R. E. DeVor, Study of a high performance AFM probe-based microscribing process, ASME J. Manuf. Sci. Eng., 132, 030906 (2010).

    Google Scholar 

  48. Y. T. Mao, K. C. Kuo, C. E. Tseng, J. Y. Huang, Y. C. Lai, J. Y. Yen, C. K. Lee, W. L. Chuang, Research on three dimensional machining effects using atomic force microscope, Rev. Sci. Instrum., 80, 0651051 (2009).

    Google Scholar 

  49. T. A. Jung, A. Moser, H. J. Hug, D. Brodbeck, R. Hofer, H. R. Hidber, U. D. Schwarz, The atomic force microscope used as a powerful tool for machining surfaces, Ultramicroscopy, 42–44 (Part 2), 1446–1451 (1992).

    Google Scholar 

  50. X. Jin, W. N. Unertl, Submicrometer modification of polymer surfaces with a surface force microscope, Appl. Phys. Lett., 61, 657–659 (1992).

    Google Scholar 

  51. S. I. Yamamoto, H. Yamada, H. Tokumoto, Nanometer modifications of non-conductive materials using resist-films by atomic force microscopy, Jpn. J. Appl. Phys., 34, 3396–3399 (1995).

    Google Scholar 

  52. S. F. Y. Li, H. T. Ng, P. C. Zhang, P. K. H. Ho, L. Zhou, G. W. Bao, S. L. H. Chan, Submicrometer lithography of a silicon substrate by machining of photoresist using atomic force microscopy followed by wet chemical etching, Nanotechnology, 8, 76–81 (1997).

    Google Scholar 

  53. U. Kunze, B. Klehn, Plowing on the sub-50 nm scale: nanolithography using scanning force microscopy, Adv. Mater., 11, 473 (1999).

    Google Scholar 

  54. C. H. Choi, D. J. Lee, J. Sung, M. W. Lee, S. Lee, E. Lee, B. O, A study of AFM-based scratch process on polycarbonate surface and grating application, Appl. Surf. Sci., 256, 7668–7671 (2010).

    Google Scholar 

  55. H. Sugihara, A. Takahara, T. Kajiyama, Mechanical nanofabrication of lignoceric acid monolayer with atomic force microscopy, J. Vac. Sci. Technol. B, 19, 593–595 (2001).

    Google Scholar 

  56. Y. Zhang, E. Balaur, P. Schmuki, Nanopatterning of an organic monolayer covered Si (1 1 1) surfaces by atomic force microscope scratching, Electrochim. Acta, 51, 3674–3679 (2006).

    Google Scholar 

  57. M. Müler, T. Fiedler, R. Gröger, T. Koch, S. Walheim, C. Obermair, T. Schimmel, Controlled structuring of mica surfaces with the tip of an atomic force microscope by mechanically induced local etching, Surf. Interface Anal., 36, 189–192 (2004).

    Google Scholar 

  58. S. Kopta, M. Salmeron, The atomic scale origin of wear on mica and its contribution to friction, J. Chem. Phys., 113, 8249–8252 (2000).

    Google Scholar 

  59. M. Firtel, G. Henderson, I. Sokolov, Nanosurgery: observation of peptidoglycan strands in Lactobacillus helveticus cell walls, Ultramicroscopy, 101, 105–109 (2004).

    Google Scholar 

  60. B. W. Muir, A. Fairbrother, T. R. Gengenbach, F. Rovere, M. A. Abdo, K. M. McLean, P. G. Hartley, Scanning probe nanolithography and protein patterning of low fouling plasma polymer multilayer films, Adv. Mater. 18, 3079–3082 (2006).

    Google Scholar 

  61. J. G. Park, C. Zhang, R. Liang, B. Wang, Nano-machining of highly oriented pyrolytic graphite using conductive atomic force microscope tips and carbon nanotubes, Nanotechnology, 18, 405306 (2007).

    Google Scholar 

  62. E. Gnecco, R. Bennewitz, E. Meyer, Abrasive wear on the atomic scale, Phys. Rev. Lett., 88, 2155011 (2002).

    Google Scholar 

  63. R. Rank, H. Brueckl, J. Kretz, I. Moench, G. Reiss, Nanoscale modification of conducting lines with a scanning force microscope, Vacuum, 48, 467–472 (1997).

    Google Scholar 

  64. T. Sumomogi, T. Endo, K. Kuwahara, R. Kaneko, T. Miyamoto, Micromachining of metal surfaces by scanning probe microscope, J. Vac. Sci. Technol. B, 12, 1876–1880 (1994).

    Google Scholar 

  65. M. Watanabe, H. Minoda, K. Takayanagi, Fabrication of gold nanowires using contact mode atomic force microscope, Jpn. J. Appl. Phys., 43, 6347–6349 (2004).

    Google Scholar 

  66. X. Li, P. Nardi, C. W. Baek, J. M. Kim, Y. K. Kim, Direct nanomechanical machining of gold nanowires using a nanoindenter and an atomic force microscope, J. Micromech. Microeng., 15, 551–556 (2005).

    Google Scholar 

  67. T. H. Fang, J. G. Chang, C. I. Weng, Nanoindentation and nanomachining characteristics of gold and platinum thin films, Mater. Sci. Eng. A, 430, 332–340 (2006).

    Google Scholar 

  68. H. D. F. Filho, M. H. P. Mauricio, C. R. Ponciano, R. Prioli, Metal layer mask patterning by force microscopy lithography, Mater. Sci. Eng. B, 112, 194–199 (2004).

    Google Scholar 

  69. T. H. Fang, C. I. Weng, J. G. Chang, Machining characterization of the nano-lithography process using atomic force microscopy, Nanotechnology, 11, 181–187 (2000).

    Google Scholar 

  70. A. Notargiacomo, V. Foglietti, E. Cianci, G. Capellini, M. Adami, P. Faraci, F. Evangelisti, C. Nicolini, Atomic force microscopy lithography as a nanodevice development technique, Nanotechnology, 10, 458–463 (1999).

    Google Scholar 

  71. A. A. Tseng, J. Shirakashi, S. Nishimura, K. Miyashita, A. Notargiacomo, Scratching properties of nickel-iron thin film and silicon using atomic force microscopy, J. Appl. Phys., 106, 044314 (2009).

    Google Scholar 

  72. N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, K. Ashida, H. Ofune, Nanomachining Zr-based metallic glass surfaces using an atomic force microscope, Int. J. Mach. Mach. Mater., 2, 3–16 (2007).

    Google Scholar 

  73. L. Santinacci, T. Djenizian, H. Hildebrand, S. Ecoffey, H. Mokdad, T. Campanella, P. Schmuki, Selective palladium electrochemical deposition onto AFM-scratched silicon surfaces, Electrochim. Acta, 48, 3123–3130 (2003).

    Google Scholar 

  74. T. Ogino, S. Nishimura, J. Shirakashi, Scratch nanolithography on Si surface using scanning probe microscopy: influence of scanning parameters on groove size, Jpn. J. Appl. Phys., 47, 712–714 (2008).

    Google Scholar 

  75. E. B. Brousseau, F. Krohs, E. Caillaud, S. Dimov, O. Gibaru, S. Fatikow, Development of a novel process chain based on atomic force microscopy scratching for small and medium series production of polymer nanostructured components, J. Manuf. Sci. Eng., 132, 0309011 (2010).

    Google Scholar 

  76. A. A. Tseng, A. Notargiacomo, Nanoscale fabrication by nonconventional approaches, J. Nanosci. Nanotechnol., 5, 683–702 (2005).

    Google Scholar 

  77. S. Miyake, J. Kim, Nanoprocessing of silicon by mechanochemical reaction using atomic force microscopy and additional potassium hydroxide solution etching, Nanotechnology, 16, 149–157 (2005).

    Google Scholar 

  78. J. W. Park, N. Kawasegi, N. Morita, D. W. Lee, Tribonanolithography of silicon in aqueous solution based on atomic force microscopy, Appl. Phys. Lett., 85, 1766–1768 (2004).

    Google Scholar 

  79. N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, K. Ashida, Etch stop of silicon surface induced by tribo-nanolithography, Nanotechnology, 16, 1411–1414 (2005).

    Google Scholar 

  80. Y. D. Yan, T. Sun, X. S. Zhao, Z. J. Hu, S. Dong, Fabrication of microstructures on the surface of a micro/hollow target ball by AFM, J. Micromech. Microeng., 18, 035002 (2008).

    Google Scholar 

  81. T. G. Bifano, T. A. Dow, R. O. Scattergood, Ductile regime grinding: a new technology for machining brittle materials, J. Eng. Ind., Trans. ASME, 113, 184–189 (1991).

    Google Scholar 

  82. H. T. Young, H. T. Liao, H. Y. Huang, Novel method to investigate the critical depth of cut of ground silicon wafer, J. Mater. Process. Technol., 182, 157–162 (2007).

    Google Scholar 

  83. J. W. Park, C. M. Lee, S. C. Choi, Y. W. Kim, D. W. Lee, Surface patterning for brittle amorphous material using nanoindenter-based mechanochemical nanofabrication, Nanotechnology, 19, 085301 (2008).

    Google Scholar 

  84. R. Prioli, M. Chhowalla, E. L. Freire, Friction and wear at nanometer scale: a comparative study of hard carbon films, Diam. Relat. Mater., 12, 2195–2202 (2003).

    Google Scholar 

  85. N. Yasui, H. Inaba, K. Furusawa, M. Saito, N. Ohtake, Characterization of head overcoat for 1 Tb/in2 magnetic recording, IEEE Trans. Magn., 45, 805–809 (2009).

    Google Scholar 

  86. S. Tsuchitani, R. Kaneko, S. Hirono, Effects of humidity on nanometer scale wear of a carbon film, Trib. Int., 40, 306–312 (2007).

    Google Scholar 

  87. M. Bai, K. Koji, U. Noritsugu, M. Yoshihiko, X. Junguo, T. Hiromitsu, Scratch-wear resistance of nanoscale super thin carbon nitride overcoat evaluated by AFM with a diamond tip, Surf. Coat. Technol., 126, 181–194 (2000).

    Google Scholar 

  88. F. Z. Fang, G. X. Zhang, An experimental study of optical glass machining, Int. J. Adv. Manuf. Technol., 23, 155–160 (2004).

    Google Scholar 

  89. G. Lu, X. Zhou, H. Li, Z. Yin, B. Li, L. Huang, F. Boey, H. Zhang, Nanolithography of single-layer graphene oxide films by atomic force microscopy, Langmuir, 26, 6164–6166 (2010).

    Google Scholar 

  90. D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace, Processable aqueous dispersion of graphene nanosheets, Nat. Nanotechnol., 3, 101–105 (2008).

    Google Scholar 

  91. D. H. Kim, J. Y. Koo, J. J. Kim, Cutting of multiwalled carbon nanotubes by a negative voltage tip of an atomic force microscope: a possible mechanism, Phys. Rev. B Cond. Matt., 68, 113406 (2003).

    Google Scholar 

  92. Z. Lu, Y. Zhou, Y. Du, R. Moate, D. Wilton, G. Pan, Y. Chen, Z. Cui, Current-assisted magnetization switching in a mesoscopic NiFe ring with nanoconstrictions of a wire, Appl. Phys. Lett., 88, 142507 (2006).

    Google Scholar 

  93. K. Miyake, S. Fujisawa, A. Korenaga, T. Ishida, S. Sasaki, The effect of pile-up and contact area on hardness test by nanoindentation, Jpn. J. Appl. Phys. Part 1, 43, 4602–4605 (2004).

    Google Scholar 

  94. Y. D. Yan, T. Sun, Y. C. Liang, S. Dong, Effects of scratching directions on AFM-based abrasive abrasion process, Tribol. Int., 42, 66–70 (2009).

    Google Scholar 

  95. B. Mills, A. H. Redford, Machinability of Engineering Materials, Applied Science, London, 1983.

    Google Scholar 

  96. H. Kuramochi, K. Ando, T. Tokizaki, M. Yasutake, F. Perez-Murano, J. A. Dagata, H. Yokoyama, Large scale high precision nano-oxidation using an atomic force microscope, Surf. Sci., 566–568, 343–348 (2004).

    Google Scholar 

  97. Z. Kato, M. Sakairi, H. Takahashi, Nanopatterning on aluminum surfaces with AFM probe, Surf. Coat. Technol., 169–170, 195–198 (2003).

    Google Scholar 

  98. S. P. Timoshenko, J. N. Goodier, Theory of Elasticity, 3rd ed., McGraw-Hill, New York, NY, 1970 (Name after H. Hertz, whose work was originally published in 1881).

    MATH  Google Scholar 

  99. R. W. Carpick, M. Salmeron, Scratching the surface: Fundamental investigations of tribology with atomic force microscopy, Chem. Rev., 97, 1163–1194 (1997).

    Google Scholar 

  100. D. Tabor, The Hardness of Metals, Clarendon Press, Oxford, UK, 1951.

    Google Scholar 

  101. C. Klein, Anisotropy of Young’s modulus and Poisson’s ratio in diamond, Mater. Res. Bull., 27, 1407–1414 (1992).

    Google Scholar 

  102. T. Namazu, S. Inoue, Characterization of single crystal silicon and electroplated nickel films by uniaxial tensile test with in situ X-ray diffraction measurement, Fatigue Fract. Eng. Mater. Struct., 30, 13–20 (2007).

    Google Scholar 

  103. L. Zhou, Y. Yao, Single crystal bulk material micro/nano indentation hardness testing by nanoindentation instrument and AFM, Mater. Sci. Eng. A, 460–461, 95–100 (2007).

    Google Scholar 

  104. V. Mulloni, R. Bartali, S. Colpo, F. Giacomozzi, N. Laidani, B. Margesin, Electrical and mechanical properties of layered gold–chromium thin films for ohmic contacts in RF-MEMS switches, Mater. Sci. Eng. B, 163, 199–203 (2009).

    Google Scholar 

  105. A. A. Volinsky, J. Vella, I. S. Adhihetty, V. Sarihan, L. Mercado, B. H. Yeung, W. W. Gerberich, Microstructure and mechanical properties of electroplated Cu thin films, Mat. Res. Soc. Symp., 649, Q5.3.1–Q5.3.6 (2001).

    Google Scholar 

  106. T. W. Wu, C. Hwang, J. Lo, P. Alexopoulos, Microhardness and microstructure of ion-beamsputtered, nitrogen-doped NiFe films, Thin Solid Films, 166, 299–308 (1988).

    Google Scholar 

  107. M. J. Madou, Fundamentals of Microfabrication: The Science of Minizturization, 2nd ed., CRC, Boca Raton, FL, 2002.

    Google Scholar 

  108. M. Kuruvilla, T. S. Srivatsan, M. Petraroli, L. Park, An investigation of microstructure, hardness, tensile behaviour of a titanium alloy: role of orientation, Sadhana, 33, 235–250 (2008).

    Google Scholar 

  109. Y. I. Golovin, Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers and films: A review, Phys. Solid State, 50, 2205–2236 (2008).

    Google Scholar 

  110. L. Calabri, N. Pugno, A. Rota, D. Marchetto, S. Valeri, Nanoindentation shape effect: experiments, simulations and modelling, J. Phys. Condens. Matter, 19, 395002 (2007).

    Google Scholar 

  111. Z. Zhou, Y. Zhou, M. Wang, C. Yang, J. Chen, W. Ding, X. Gao, T. Zhang, Evaluation of Young’s modulus and residual stress of NiFe film by microbridge testing, J. Mater. Sci. Technol., 22, 345–348 (2006).

    Google Scholar 

  112. J. F. Archard, Contact and rubbing of flat surfaces, J. Appl. Phys., 24, 981(1953).

    Google Scholar 

  113. M. Srivastava, V. K. W. Grips, K. S. Rajam, Electrochemical deposition and tribological behaviour of Ni and Ni-Co metal matrix composites with SiC nano-particles, Appl. Surf. Sci., 253, 3814–3824 (2007).

    Google Scholar 

  114. K. H. Chung, H. J. Kim, L. Y. Lin, D. E. Kim, Tribological characteristics of ZnO nanowires investigated by atomic force microscope, Appl. Phys. A, 92, 267–274 (2008).

    Google Scholar 

  115. M. C. Kong, W. B. Lee, C. F. Cheung, S. To, A study of materials swelling and recovery in single-point diamond turning of ductile materials, J. Mater. Process. Technol., 180, 210–215 (2006).

    Google Scholar 

  116. A. A. Tseng, K. P. Jen, T. C. Chen, R. Kondetimmamhalli, Y. V. Murty, Forming properties and springback evaluation of copper beryllium sheets, Metall. Mater. Trans. A, 26, 2111–2121 (1995).

    Google Scholar 

  117. C. Xiang, H. J. Sue, J. Chu, B. Coleman, Scratch behavior and material property relationship in polymers, J. Polym. Sci. B, 39, 47–59 (2001).

    Google Scholar 

  118. A. Majumdar, Scanning thermal microscopy, Annu. Rev. Mater. Sci., 29, 505–585 (1999).

    Google Scholar 

  119. R. Szoszkiewicz, T. Okada, S. C. Jones, T. D. Li, W. P. King, S. R. Marder, E. Riedo, High-speed, sub-15 nm feature size thermochemical nanolithography, Nano Lett., 7, 1064–1069 (2007).

    Google Scholar 

  120. C. H. Chiou, S. J.Chang, G. B. Lee, H. H. Lee, New fabrication process for monolithic probes with integrated heaters for nanothermal machining, Jpn. J. Appl. Phys., Part 1, 45, 208–214 (2006).

    Google Scholar 

  121. A. Boisen, O. Hanseny, S. Bouwstray, AFM probes with directly fabricated tips, J. Micromech. Microeng., 6, 58–62 (1996).

    Google Scholar 

  122. B. W. Chui, T. D. Stowe, Y. S. Ju, K. E. Goodson, T. W. Kenny, H. J. Mamin, B. D. Terris, R. P. Ried, D. Rugar, Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage, IEEE J. Microelectromech. Syst., 7, 69–78 (1998).

    Google Scholar 

  123. D. W. Lee, T. Ono, M. Esashi, Electrical and thermal recording techniques using a heater integrated microprobe, J. Micromech. Microeng., 12, 841–848 (2002).

    Google Scholar 

  124. H. Okabe, T. Tsumura, J. Shimizu, L. Zhou, H. Eda, Experimental and simulation research on influence of temperature on nano-scratching process of silicon wafer, Key Eng. Mater., 329, 379 (2007).

    Google Scholar 

  125. Y. Hua, W. P. King, C. L. Henderson, Nanopatterning materials using area selective atomic layer deposition in conjunction with thermochemical surface modification via heated AFM cantilever probe lithography, Microelectron. Eng., 85, 934–936 (2008).

    Google Scholar 

  126. O. Coulembier, A. Knoll, D. Pires, B. Gotsmann, U. Duerig, J. Frommer, R. D. Miller, P. Dubois, J. L. Hedrick, Probe-based nanolithography: self-amplified depolymerization media for dry lithography, Macromolecules, 43, 572 (2010).

    Google Scholar 

  127. D. Wang, S. Kim, W. D. Underwood, A. J. Giordano, C. L. Henderson, Z. T. Dai, W. P. King, S. R. Marder, E. Riedo, Direct writing and characterization of poly(p-phenylene vinylene) nanostructures, Appl. Phys. Lett., 95, 233108 (2009).

    Google Scholar 

  128. M. Lantz, D. Wiesmann, B. Gotsmann, Dynamic superlubricity and the elimination of wear on the nanoscale, Nat. Nanotechnol., 4, 586 (2009).

    Google Scholar 

  129. J. Michler, R. Gassilloud, P. Gasser, L. Santinacci, P. Schmuki, Defect-free AFM scratching at the Si/SiO2 interface used for selective electrodeposition of nanowires, Electrochem Solid-State Lett., 7, A41 (2004).

    Google Scholar 

  130. M. Seo, D. Kawamata, Nano-scratching in solution to the single-crystal Ta(100) subjected to anodic oxidation, J. Phys. D, 39, 3150 (2006).

    Google Scholar 

  131. M. Pendergast, A. A. Volinsky, X. Pang, R. Shields, in Nanoscale Tribology - Impact for Materials and Devices, Materials Research Society Symposium Proceedings, Vol. 1085, 19–24 (2008).

    Google Scholar 

  132. A. A. Tseng, T. W. Lee, A. Notargiacomo, T. P. Chen, Formation of uniform nanoscale oxide layers assembled by overlapping oxide lines using atomic force microscopy, J. Micro/Nanolith. MEMS & MOEMS, 8, 043050 (2009).

    Google Scholar 

  133. S. Miyake, H. Zheng, J. Kim, M. Wang, Nanofabrication by mechanical and electrical processes using electrically conductive diamond tip, J. Vac. Sci. Technol. B, 26, 1660 (2008).

    Google Scholar 

  134. M. Koinuma, K. Uosaki, AFM tip induced selective electrochemical etching of and metal deposition on p-GaAs(100) surface, Surf. Sci., 357–358, 565–570 (1996).

    Google Scholar 

  135. R. D. Piner, J. Zhu, F. Xu, S. Hong, C. A. Mirkin, “Dip-pen” nanolithography, Science, 283, 661–663 (1999).

    Google Scholar 

  136. L. Guangming, W. B. Larry, Controlled patterning of polymer films using an AFM tip as a nano-hammer, Nanotechnology, 18, 245302 (2007).

    Google Scholar 

  137. F. Yang, E. Wornyo, K. Gall, W. P. King, Nanoscale indent formation in shape memory polymers using a heated probe tip, Nanotechnology, 18, 285302 (2007).

    Google Scholar 

  138. X. Hu, J. Yu, J. Chen, X. Hu, Analysis of electric field-induced fabrication on Au and Ti with an STM in air, Appl. Surf. Sci., 187, 173–178 (2002).

    Google Scholar 

  139. G. Lee, H. Jung, J. Son, K. Nam, T. Kwon, G. Lim, Y. H. Kim, J. Seo, S. W. Lee, D. S. Yoon, Experimental and numerical study of electrochemical nanomachining using an AFM cantilever tip, Nanotechnology, 21, 185301 (2010).

    Google Scholar 

  140. J. C. Rosa, M. Wendel, H. Lorenz, J. P. Kotthaus, M. Thomas, H. Kroemer, Direct patterning of surface quantum wells with an atomic force microscope, Appl. Phys. Lett., 73, 2684–2686 (1998).

    Google Scholar 

  141. H. W. Schumacher, U. F. Keyser, U. Zeitler, R. J. Haug, K. Eberl, Nanomachining of mesoscopic electronic devices using an atomic force microscope, Appl. Phys. Lett., 75, 1107 (1999).

    Google Scholar 

  142. M. Versen, B. Klehn, U. Kunze, D. Reuter, A. D. Wieck, Nanoscale devices fabricated by direct machining of GaAs with an atomic force microscope, Ultramicroscopy, 82, 159–163 (2000).

    Google Scholar 

  143. C. C. Faulkner, D. A. Allwood, R. P. Cowburn, Tuning of biased domain wall depinning fields at Permalloy nanoconstrictions, J. Appl. Phys., 103, 073914 (2008).

    Google Scholar 

  144. M. Hirtz, M. K. Brinks, S. Miele, A. Studer, H. Fuchs, L. Chi, Structured polymer brushes by AFM lithography, Small, 5, 919–923 (2009).

    Google Scholar 

  145. R. R. Bhat, B. N. Chaney, J. Rowley, A. Liebmann-Vinson, J. Genzer, Tailoring cell adhesion using surface-grafted polymer gradient assemblies, Adv. Mater., 17, 2802–2807 (2005).

    Google Scholar 

  146. S. Lenhert, A. Sesma, M. Hirtz, L. F. Chi, H. Fuchs, H. P. Wiesmann, A. E. Osbourn, B. M. Moerschbacher, Capillary-induced contact guidance, Langmuir, 23, 10216–10223 (2007).

    Google Scholar 

  147. M. Motornov, S. Minko, K. J. Eichhorn, M. Nitschke, F. Simon, M., Stamm, Reversible tuning of wetting behavior of polymer surface with responsive polymer brushes, Langmuir, 19, 8077–8085 (2003).

    Google Scholar 

  148. J. I. Shirakashi, Scanning probe microscope lithography at the micro- and nano-scales, J. Nanosci. Nanotechnol., 10, 4486–4494 (2010).

    Google Scholar 

  149. X. L. Zhao, S. Dong, Y. C. Liang, T. Sun, Y. D. Yan, AFM for preparing Si masters in soft lithography, Key Eng. Mater., 315–316, 762–765 (2006).

    Google Scholar 

  150. T. Plecenik, M. Gregor, M. Prascak, R. Micunek, M. Grajcar, A. Lugstein, E. Bertagnolli, M. Zahoran, T. Roch, P. Kúš, A. Plecenik, Superconducting MgB2 weak links and superconducting quantum interference devices prepared by AFM nanolithography, Physica C, 468, 789–792 (2008).

    Google Scholar 

  151. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride, Nature, 410, 63–64 (2001).

    Google Scholar 

  152. F. Iwata, K. Saigo, T. Asao, M. Yasutake, O. Takaoka, T. Nakaue, S. Kikuchi, Removal method of nano-cut debris for photomask repair using an atomic force microscopy system, Jpn. J. Appl. Phys., 48, 08JB2 (2009).

    Google Scholar 

  153. T. Robinson, A. Dinsdale, M. Archuletta, R. Bozak, R. White, Nanomachining photomask repair of complex patterns, in Photomask Technology 2008, Proceedings of SPIE, Vol. 7122, The International Society for Optical Engineering, 2008.

    Google Scholar 

  154. C. L. Henderson, W. P. King, C. E. White, H. R. Rowland, Microsystem manufacturing via embossing of thermally sacrificial polymers, in Materials Research Society Symposium Procceedings, EXS, 17-20, Materials Research Society, 2004.

    Google Scholar 

  155. J. W. Jang, D. Maspoch, T. Fujigaya, C. A. Mirkin, A ‘molecular eraser’ for dip-pen nanolithography, Small, 3, 600–605 (2007).

    Google Scholar 

  156. E. Henderson, Imaging and nanodissection of individual supercoiled plasmids by atomic force microscopy, Nucleic Acids Res., 20, 445–447, 1992.

    Google Scholar 

  157. J. Hu, Y. Zhang, H. B. Gao, M. Q. Li, U. Hartmann, Artificial DNA patterns by mechanical nanomanipulation, Nano Lett., 2, 55–57, 2002.

    Google Scholar 

  158. M. Washizu, Microsystems for single-molecule handling and modification, in Micromachines as Tools for Nanotechnology, H. Fujita (Ed.), Chapter 2, 22–43, Springer, Berlin, 2003.

    Google Scholar 

  159. D. Kim, N. K. Chung, J. S. Kim, J. W. Park, Immobilizing a single DNA molecule at the apex of AFM tips through picking and ligation, Soft Matter, 6, 3979–3984, 2010.

    Google Scholar 

  160. N. X. Randall, G. Favaro, C. H. Frankel, The effect of intrinsic parameters on the critical load as measured with the scratch test method, Surf. Coat. Technol., 137, 146–151 (2001).

    Google Scholar 

  161. J. Li, W. Beres, Scratch test for coating/substrate systems – A literature review, Can. Metall. Quart., 46, 155–174 (2007).

    Google Scholar 

  162. H. Y. Lin, H. A. Chen, Y. J. Wu, J. H. Huang, H. N. Lin, Fabrication of metal nanostructures by atomic force microscopy nanomachining and related applications, J. Nanosci. Nanotechnol., 10, 4482–4485 (2010).

    Google Scholar 

  163. B. Gotsmann, U. Duerig, J. Frommer, C. J. Hawker, Exploiting chemical switching in a diels-alder polymer for nanoscale probe lithography and data storage, Adv. Funct. Mater., 16, 1499–1505 (2006).

    Google Scholar 

  164. A. K. Geim, Graphene: status and prospects, Science, 324, 1530–1534 (2009).

    Google Scholar 

  165. N. Farkas, R. D. Ramsier, J. A. Dagata, High-voltage nanoimprint lithography of refractory metal films, J. Nanosci. Nanotechnol., 10, 4423–4433 (2010).

    Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the support of Pacific Technology, LLC of Phoenix (USA) and the National Science Council (ROC) under Grant No. NSC99-2811-E-007-014 in funding a University Chair professorship at National Tsing Hua University (NTHU) in Hsinchu, Taiwan, where the author spent a semester in preparation of this manuscript in 2010. The author is grateful to Professors Wen-Hwa Chen, Hung Hocheng, and Chien-Chung Fu of NTHU for their hospitality and encouragement during the author’s stay in Hsinchu. Special thanks are to Professor Jun-ichi Shirakashi of Tokyo University of Agriculture and Technology (Japan), Professor Noritaka Kawasegi of University of Toyama (Japan), Professor Zhuang Li of Chinese Academy of Sciences (China), Professor Patrik Schmuki of University of Erlangen-Nuremberg (Germany), Dr. Eugeniu Balaur of La Trobe University (Australia), Dr. Andrea Notargiacomo of CNR-IFN (Italy), and Dr. Luca Pellegrino of CNR-SPIN (Italy) for their fruitful discussions and useful digital data for illustration and presentation.  The author is thankful for the assistance provided by Maggie S. Tseng and Parag S. Pathak of Arizona State University and by Ms Yichih Liu of NTHU in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ampere A. Tseng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tseng, A.A. (2011). Nanoscale Scratching with Single and Dual Sources Using Atomic Force Microscopes. In: Tseng, A. (eds) Tip-Based Nanofabrication. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9899-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9899-6_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9898-9

  • Online ISBN: 978-1-4419-9899-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics