Shellfish and Residual Chemical Contaminants: Hazards, Monitoring, and Health Risk Assessment Along French Coasts

  • Marielle Guéguen
  • Jean-Claude Amiard
  • Nathalie Arnich
  • Pierre-Marie Badot
  • Didier Claisse
  • Thierry Guérin
  • Jean -Paul VernouxEmail author
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 213)


Shellfish farming is a common industry along European coasts. According to the 2005–2006 data from the French National Shellfish Farming Committee (CNC – Comité National de la Conchyliculture 2010; see Table 1 for a list of acronyms and abbreviations used in this chapter), Spain is the largest shellfish producer in Europe (∼270,000 t) and France ranks second, producing 200,000 t of shellfish annually. France is the leading European oyster producer, with an annual output of 130,000 t of Crassostrea gigas, and ranks fourth in the world after China, Japan, and Korea. The top three European mussel (Mytilus edulis and Mytilus galloprovincialis) producers are Spain (260,000 t), Denmark (80,000 t), and France (65,000 t). For other shellfish, the French annual output level is 15,000 t for king scallops (Pecten maximus) and a few thousand tons for Ruditapes clams (Ruditapes decussatus and Ruditapes philippinarum) and cockles (Cerastoderma edule). The economic impact of shellfish farming is considerable; despite fairly long production lead times and difficult operating conditions, shellfish farming generates annual sales of more than 650 million Euros in France, owing to its high added value.


European Food Safety Authority Bivalve Mollusk Inorganic Arsenic Chemical Contaminant Hazard Analysis Critical Control Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Afssa (2004) Avis du 16 mars 2004 de l’Agence relatif à la réévaluation des risques sanitaires du méthylmercure liés à la consommation des produits de la pêche au regard de la nouvelle dose hebdomadaire tolérable provisoire (DHTP). Available from
  2. Afssa (2005) Rapport sur “Dioxines, furanes et PCB de type dioxines: evaluation de l’exposition de la population française”, Novembre 2005, 57 pages. Available from
  3. Afssa (2006) Avis du 18 avril 2006 sur l’évaluation des risques liés à la présence d’organoétains dans les aliments. Available from
  4. Afssa (2007a) Avis du 26 juillet 2007 sur la mise en place de règles hygièniques d’utilisation de l’eau de mer propre pour la manipulation des produits de la mer. Available from
  5. Afssa (2007b) Avis du 31 octobre 2007 sur la pertinence d’établir une teneur maximale en cadmium pour les gastéropodes, les échinodermes et les tuniciers et à l’évaluation des risques sanitaires liés à des teneurs élevées en cadmium dans les bulots et les pétoncles. Available from
  6. Afssa (2008a) Avis du 21 Mars 2008 relatif à l’évaluation du dispositif de surveillance du milieu et à l’évaluation du risque lié à la consommation des coquillages, notamment dans la situation du bassin d’Arcachon. Available from
  7. Afssa (2008b) Rapport sur l’Evaluation de la surveillance chimique des zones de production conchylicole du risque lié à la consommation des coquillages, notamment dans la situation du bassin d’Arcachon. Available from
  8. Afssa (2008c) Avis du 16 septembre 2008 sur la pertinence des outils de détection des phycotoxines lipophiles dans les coquillages. Available from
  9. Alzieu C, Michel P, Tolosa I, Bacci E, Mee LD, Readman JW (1991) Organotin compounds in the Mediterranean: a continuing cause for concern. Mar Environ Res 32:261–270Google Scholar
  10. Amiard JC (1991) Réponses des organismes marins aux pollutions métalliques. In: CNRS (ed) Réactions des êtres vivants aux changements de l’environnement. Actes des Journées de l’Environnement du CNRS, Paris, pp 197–205Google Scholar
  11. Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76: 160–202Google Scholar
  12. Amiard JC, Amiard-Triquet C, Berthet B, Metayer C (1986) Contribution to the ecotoxicological study of Cd, Pb, Cu and Zn in the mussel Mytilus edulis. 1 – Field study. Mar Biol 90:425–431Google Scholar
  13. Amiard JC, Amiard-Triquet C, Berthet B, Metayer C (1987) Comparative study of the patterns of bioaccumulation of essential (Cu, Zn) and non-essential (Cd, Pb) trace metals in various estuarine and costal organisms. J Exp Mar Biol Ecol 106:73–89Google Scholar
  14. Amiard JC, Amiard-Triquet C, Charbonnier L, Mesnil A, Rainbow PS, Wang WX (2008) Bioaccessibility of essential and no-essential metals in commercial shellfish from Western Europe and Asia. Food Chem Toxicol 46:2010–2022Google Scholar
  15. Amiard JC, Berthet B (1996) Fluctuations of cadmium, copper, lead and zinc concentrations in field populations of the Pacific oyster Crassostrea gigas in the Bay of Bourgneuf (Atlantic coast, France). Ann Inst Oceanogr 72:195–207Google Scholar
  16. Amiard-Triquet C, Amiard JC (1980). Radioécologe des milieux aquatiques. Masson, Paris, 191 pGoogle Scholar
  17. Andral B, Stanisiere JY, Sauzade D, Damier E, Thebault H, Galgani F, Boissery P (2004) Monitoring chemical contamination levels in the Mediterranean based on the use of mussel caging. Mar Pollut Bull 49:704–712Google Scholar
  18. Apeti DA, Lauenstein GG, Christensen JD, Kimbrough K, Johnson WE, Kennedy M, Grant KG (2010) A historical assessment of coastal contamination in Birch Harbor, Maine based on the analysis of mussels collected in the 1940s and the Mussel Watch Program. Mar Pollut Bull 60:732–742Google Scholar
  19. ATSDR (2007) ToxGuide for Arsenic. cas#7440-38-2.;tid=3
  20. Auby I, Maurer D (2004) Etude de la reproduction des huîtres creuses dans le bassin d’Arcachon. Ifremer Edition, Nantes, 327 pGoogle Scholar
  21. Averty B, Michel P, Chiffoleau JF (2005) Les composés organostanniques dans les mollusques du littoral français. RNO, 2005. Ifremer Editor, Nantes, pp 35–38Google Scholar
  22. Bard SM (2000) Multixenobiotic resistance as a cellular defense mechanism in aquatic organisms. Aquat Toxicol 48:357–389Google Scholar
  23. Berthet B (2008) Les espèces sentinelles. In: Amiard J-C, Amiard-Triquet C (eds) Les biomarqueurs dans l’évaluation de l’état écologique des milieux aquatiques. Lavoisier, Tec&Doc, Paris, pp 121–148Google Scholar
  24. Borak J, Hosgood D (2007) Seafood arsenic: implications for human risk assessment. Regul Toxicol Pharmacol 47:204–212Google Scholar
  25. Bryan GW (1976) Heavy metal contamination in the sea. In: Johnston R (ed) Marine pollution. Academic, London, pp 185–302Google Scholar
  26. Bryan GW, Langston WJ, Humerstone LG, Burt GR, Ho YB (1983) An assessment of the gastropod Littorina littorea as an indicator of heavy-metal contamination in United kingdom estuaries. J Mar Biol Ass 63:327–345Google Scholar
  27. Buchet JP, Lison D, Ruggeri M, Foa V, Elia G (1996) Assessment of exposure to inorganic arsenic, a human carcinogen, due to the consumption of seafood. Arch Toxicol 70:773–778Google Scholar
  28. Bügel SH, Sandström B, Larsen EH (2001) Absorption and retention of selenium from shrimps in man. J Trace Elem Med Biol 14:198–204Google Scholar
  29. Butler PA (1973) Residues in fish, wildlife, and estuaries; organochlorine residues in estuarine molluscs, 1965–1972. National Pesticides Monitoring Program. J Pestic Monit 6:238–362Google Scholar
  30. Cannon JR, Saunders JB, Toia RF (1983) Isolation and preliminary toxicological evaluation of arsenobetaine – the water soluble arsenical constituent from the hepatopancreas of the western rock lobster. Sci Total Environ 31:181–185Google Scholar
  31. Cantillo AY (1998) Comparison of results of mussel watch programs of the United States and France with worldwide mussel watch studies. Mar Pollut Bull 36:712–717Google Scholar
  32. Casas S, Bacher C (2006) Modelling trace metal (Hg and Pb) bioaccumulation in the Mediterranean mussel, Mytilus galloprovincialis, applied to environmental monitoring. J Sea Res 56:168–181Google Scholar
  33. Chiffoleau J-F, Auger D, Chertier E, Le Goff R, Justome V, Maheux F, Pierre-Duplessis O, Etourneau C (2002) Variabilité de la contamination des Bulots et Coquilles Saint Jacques en Baie de Seine par les métaux. Rapport Scientifique du programme Seine-Aval, Phase 2Google Scholar
  34. Chong K, Wang WX (2001) Comparative studies on the biokinetics of Cd, Cr, and Zn in the green mussel Perna viridis and the Manila clam Ruditapes philippinarum. Environ Pollut 115:107–121Google Scholar
  35. Claisse D (1989) Chemical contamination of French coasts: the results of a ten years mussel watch. Mar Pollut Bull 20:523–528Google Scholar
  36. Claisse D (1992) Accumulation des métaux lourds et polluants organiques par les coquillages. In: Lesne J (ed) Coquillages et santé publique. Du risque à la prévention. ENS; Rennes (Pacé), pp 99–111. Available from
  37. Claisse D (1999) Le RNO: programmes actuels. Surveillance du Milieu Marin. Travaux du réseau national d’observation de la qualité du milieu marin: Bulletin RNO Edition 1999, pp 5–10Google Scholar
  38. Claisse D, Alzieu C (1993) Copper contamination as a result of antifouling paint regulations? Mar Pollut Bull 26:395–397Google Scholar
  39. Claisse D, Cossa D, Bretaudeau-Sanjuan J, Touchard G, Bombled B (2001) Methylmercury in molluscs along the French coast. Mar Pollut Bull 42:329–332Google Scholar
  40. Claisse D, Le Moigne M, Durand G, Beliaeff B (2006) Ligne de base: les contaminants chimiques dans les huîtres et les moules du littoral français. Surveillance du Milieu Marin. Travaux du réseau national d’observation de la qualité du milieu marin: Bulletin RNO Edition 2006, pp 27–51Google Scholar
  41. Crecelius EA (1977). Changes in the chemical speciation of arsenic following ingestion by man. Environ Health Perspect 19:47–50Google Scholar
  42. De Kock WC, Kramer KJM (1994) Active biomonitoring (ABM) by translocation of bivalve molluscs. In: Kramer KJM (ed) Biomonitoring of coastal waters and estuarines. CRC Press, Boca Raton, FL, pp 51–84Google Scholar
  43. Devier MH, Augagneur S, Budzinski H, Le Menach K, Mora P, Narbonne JF, Garrigues P (2005) One-year monitoring survey of organic compounds (PAHs, PCBs, TBT), heavy metals and biomarkers in blue mussels from the Arcachon bay, France. J Environ Monit 7:224–240Google Scholar
  44. EAT (2004) Etude de l’alimentation totale française. Mycotoxines, minéraux et éléments traces. Leblanc JC (coord.) Verger P, Guérin T, Volatier JL (INRA/DGAL, Mai 2004, 68 pages)Google Scholar
  45. EC (2000) Directive (EC) No 60/2000 of the European parliament and of the council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Communities L327:1–72Google Scholar
  46. EC (2001) Regulation (EC) N°466/2001 of the European parliament and the council of 8 March 2001 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Communities L77:1–13Google Scholar
  47. EC (2004a) Regulation (EC) No 853/2004 of the European parliament and the council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Off J Eur Communities L226:22–82Google Scholar
  48. EC (2004b) Regulation (EC) No 852/2004 of the European parliament and the council of 25 June 2004 on the hygiene of foodstuffs. Off J Eur Communities L226:3–21Google Scholar
  49. EC (2004c) Regulation (EC) No 854/2004 of the European parliament and the council of 25 June 2004 laying down specific rules for the organisation of official controls on products of animal origin intended for human consumption. Off J Eur Communities L226:83–127Google Scholar
  50. EC (2006a) Regulation (EC) No 776/2006 of the European parliament and the council of 23 May 2006 amending Annex VII to Regulation (EC) No 882/2004 of the European Parliament and of the Council as regards Community reference laboratories. Off J Eur Communities L136:3–8Google Scholar
  51. EC (2006b) Regulation (EC) No 882/2006 of the European parliament and the council of 16 June 2006 concerning tenders notified in response to the invitation to tender for the export of common wheat issued in Regulation (EC) No 1059/2005. Off J Eur Communities L164:24–26Google Scholar
  52. EC (2006c) Regulation (EC) No 1881/2006 of the European parliament and the council of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Communities L364:5–22Google Scholar
  53. EC (2007) Regulation (EC) No 333/2007 of 28 March 2007 laying down the methods of sampling and analysis for the official control of the levels of lead, cadmium, mercury, inorganic tin, 3-MCPD and benzo(a)pyrene in foodstuffs. Off J Eur Communities L88:29–38Google Scholar
  54. EC (2008a) Regulation (EC) No 629/2008 of the European parliament and the council of 2 July 2008 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Communities L173:6–9Google Scholar
  55. EC (2008b) Directive (EC) No 105/2008 of the European parliament and of the council of 16 December 2008 on environmental quality standards in the field of water policy. Off J Eur Communities L348:84–97Google Scholar
  56. EEC (1991) Directive (EEC) No 492/1991 of 15 July 1991 laying down the health conditions for the production and the placing on the market of live bivalve molluscs. 19 p. Available from:
  57. EFSA (2004a) Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to mercury and methylmercury in food. EFSA J 34:1–14Google Scholar
  58. EFSA (2004b) Opinion of the scientific panel on contaminants in the food chain on a request from the commission to assess the health risks to consumers associated with exposure to organotins in foodstuffs. EFSA J 102:1–119Google Scholar
  59. EFSA (2009) Scientific opinion on cadmium in food. EFSA panel on contaminants in the food chain (CONTAM). EFSA J 980:1–139Google Scholar
  60. EFSA (2010) Scientific opinion on lead in food. EFSA J 8(4):1570Google Scholar
  61. England GC, McGrath TP, Gilmer L, Seebold JG, Lev-On M, Hunt T (2001) Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type. Chemosphere 42:745–764Google Scholar
  62. Ettajani H, Amiard-Triquet C, Jeantet AY, Amiard JC, Ballan-Dufrançais C (1996) Fate and effects of soluble or sediment-bound arsenic in oysters (Crassostrea gigas Thun.). Arch Environ Contam Toxicol 31:38–46Google Scholar
  63. Fatta-Kassinos D, Meric S, Nikolaou A (2011) Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem 399:251–275Google Scholar
  64. Foa V, Colombi A, Maroni M, Buratti M, Calzaferri G (1984) The speciation of the chemical forms of arsenic in the biological monitoring of exposure to inorganic arsenic. Sci Total Environ 34:241–259Google Scholar
  65. Francesconi KA, Edmonds JS (1998) Arsenic species in marine samples. Croat Chem Acta 71:343–359Google Scholar
  66. Francesconi KA, Tangaar R, Mc Kenzie CJ, Goessler W (2002) Arsenic metabolites in human urine after ingestion of an arsenosugar. Clin Chem 48:92–101Google Scholar
  67. Franco J, Borja Á, Solaun O, Pérez V (2002) Heavy metals in molluscs from the Basque Coast (Northern Spain): results from an 11-year monitoring programme. Mar Pollut Bull 44:973–976Google Scholar
  68. Freeman HC, Uthe JF, Fleming RB, Odense PH, Ackman RG, Landry G, Musial C (1979) Clearance of arsenic ingested by man from arsenic contaminated fish. Bull Environ Contam Toxicol 22:224–229Google Scholar
  69. Gagnaire B, Thomas-Guyon H, Burgeot T, Renault T (2006) Pollutant effects on Pacific oyster, Crassostrea gigas (Thunberg), hemocytes: screening of 23 molecules using flow cytometry. Cell Biol Toxicol 22:1–14Google Scholar
  70. Geffard A, Amiard JC, Amiard-Triquet C (2002) Kinetics of metal elimination in oysters from a contaminated estuary. Comp Biochem Physiol C: Toxicol Pharmacol 131:281–293Google Scholar
  71. George SG, Pirie, BJS, Cheyne AR, Coombs TL, Grant PT (1978) Detoxication of metals by marine bivalves: an ultrastructural study of the compartmentation of copper and zinc in the oyster, Ostrea edulis. Mar Biol 45:147–156Google Scholar
  72. George SG, Pirie BJ, Frazier JM, Thomson JD (1984) Interspecies differences in heavy metal detoxication in oysters. Mar Environ Res 14:462–464Google Scholar
  73. Goldberg ED (1975) The mussel watch – a first step in global marine monitoring. Mar Pollut Bull 6:111–113Google Scholar
  74. Goldberg ED, Bowen VT, Farrington JW, Harvey G, Martin JH, Parker PL, Risebrough RW, Robertson W, Schneider E, Gamble E (1978) The mussel watch. Environ Conserv 5:101–125Google Scholar
  75. Goldberg ED, Koide M, Hodge V, Flegal AR, Martin J (1983) U.S. mussel watch: 1977–1978 results on trace metals and radionuclides. Estuar Coastal Shelf Sci 16:69–93Google Scholar
  76. Gomez-Ariza JL, Morales E, Giraldez I (1999) Uptake and elimination of tributyltin in clams, Venerupis decussata. Mar Environ Res 47:399–413Google Scholar
  77. Guerin T, Sirot V, Volatier JL, Leblanc JC (2007) Organotin levels in seafood and its implications for health risk in high-seafood consumers. Sci Total Environ 388:66–77Google Scholar
  78. Hamilton SJ (2004) Review of selenium toxicity in the aquatic food chain. Sci Total Environ 326:1–31Google Scholar
  79. Han BC, Jeng WL, Tsai YN, Jeng MS (1993) Depuration of copper and zinc by green oysters and blue mussels of Taiwan. Environ Pollut 82:93–97Google Scholar
  80. He M, Ke CH, Wang WX (2010) Effects of cooking and subcellular distribution on the bioaccessibility of trace elements in two marine fish species. J Agric Food Chem 58:3517–3523Google Scholar
  81. Hédouin L, Pringault O, Metian M, Bustamante P, Warnau M (2007) Nickel bioaccumulation in bivalves from the New Caledonia lagoon: seawater and food exposure. Chemosphere 66:1449–1457Google Scholar
  82. Heinrich-Ramm R, Mindt-Prüfert S, Szadkowski D (2002) Arsenic species excretion after controlled seafood consumption. J Chromatogr B 778:263–273Google Scholar
  83. Heinzow B, Mohr S, Ostendorp G, Kerst M, Körner W (2007) PCB and dioxin-like PCB in indoor air of public buildings contaminated with different PCB sources – deriving toxicity equivalent concentrations from standard PCB congeners. Chemosphere 67:1746–1753Google Scholar
  84. Hillwalker WE, Jepson PC, Anderson KA (2006) Selenium accumulation patterns in lotic and lentic aquatic systems. Sci Total Environ 366:367–379Google Scholar
  85. Hori T, Nakagawa R, Tobiishi K, Lida T, Tsutumi T, Sasaki K, Toyoda M (2005) Effects of cooking on concerns of polychlorinated dibenzo-p-dioxins and related compounds in fish and meat. J Agric Food Chem 53:8820–8828Google Scholar
  86. Hsueh YM, Hsu MK, Chiou HY, Yang MH, Huang CC, Chen CJ (2002) Urinary arsenic speciation in subjects with or without restriction from seafood dietary intake. Toxicol Lett 133:83–91Google Scholar
  87. Huet M, Michel P, Averty B, Paulet YM (2003) Imposex-TBT. La pollution par les organostanniques le long des côtes françaises, de la Manche et de l’Atlantique. Surveillance du Milieu Marin. Travaux du réseau national d’observation de la qualité du milieu marin: Bulletin RNO Edition 2003, Nantes (La Chapelle sur Erdre), 133pGoogle Scholar
  88. INCA 1 (1999) Enquête individuelle et nationale sur la consommation alimentaire. Report.
  89. INCA 2 (2009) Enquête individuelle et nationale des consommations alimentaires 2 (INCA 2) 2006–2007. Report 228 p.
  90. International chemical safety sheets (2010)
  91. JECFA (2010a) Joint FAO/WHO expert committee on food additives seventy-second meeting Rome, 16–25 February 2010 summary and conclusion. Issued 16th Mar 2010, 1–16Google Scholar
  92. JECFA (2010b) Joint FAO/WHO expert committee on food additives seventy-third meeting Geneva, 8–17 June 2010 summary and conclusion. Issued 24th June 2010, 1–17Google Scholar
  93. JEFCA (2001) Summary of the 57th meeting of the joint FAO/WHO expert committee on food additives. Rome, 5–14 June 2001Google Scholar
  94. Journal Officiel de la République Française (JORF) (1999) Arrêté du 21 mai 1999 relatif au classement de salubrité et à la surveillance des zones de production et des zones de reparcage des coquillages vivants. Paris, pp 8508–8509.
  95. James A, Claisse D, Marchand M (2006) Les normes de qualité environnementales (NQE), outils d’évaluation du bon état chimique. In: Ifremer (ed) RNO, Surveillance du Milieu Marin. Ifremer, Nantes, pp 20–26Google Scholar
  96. Johnson MA, Paulet YM, Donval A, Le Pennec M (1996) Histology, histochemistry and enzyme biochemistry in the digestive system of the endosymbiont-bearing bivalve Loripes lucinalis (Lamarck). J Exp Mar Biol Ecol 197:15–38Google Scholar
  97. Kaise T, Watanabe S, Itoh K (1985) The acute toxicity of arsenobetaine. Chemosphere 14:1327–1332Google Scholar
  98. Kales SN, Huyck KL, Goldman RH (2006) Elevated urine arsenic: un-speciated results lead to unnecessary concern and further evaluations. J Anal Toxicol 30:80–85Google Scholar
  99. Langston WJ (1983) The behaviour of arsenic in selected U.K. estuaries. Can J Fish Aquat Sci 40:143–150Google Scholar
  100. Leblanc JC, Guérin T, Noël L, Calamassi-Tran G, Volatier JL, Verger P (2005) Dietary exposure estimates of 18 elements from the 1st French total diet study. Food Add Contam: Part A 22:624–641Google Scholar
  101. Leblanc JC, Volatier JL, Sirot V, Bemrah-Aouchia N (2006) CALIPSO: Fish and seafood consumption study and biomarker of exposure to trace elements, pollutants and omega 3. Report, 162 p.
  102. Lewtas J (2007) Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat Res 636:95–133Google Scholar
  103. Liber K, Culp JM, Kerrich R (2006) Importance de la spéciation de l’arsenic pour exprimer la toxicité de cet élément dans les organismes aquatiques: implications pour les recommandations pour la qualité des eaux du Canada, Santé CanadaGoogle Scholar
  104. Lim PE, Lee CK, Din Z (1998) The kinetics of bioaccumulation of zinc, copper, lead and cadmium by oysters (Crassostrea iredalei and C. belcheri) under tropical field conditions. Sci Total Environ 216:147–157Google Scholar
  105. Lorenzana RM, Yeow AY, Colman JT, Chappell LL, Choudhury H (2009) Arsenic in Seafood. Hum Ecol Risk Assess 15:185–200Google Scholar
  106. Ma M, Le XC (1998) Effect of arsenosugar ingestion on urinary arsenic speciation. Clin Chem 44:539–550Google Scholar
  107. Manta DS, Angelone M, Bellanca A, Neri R, Sprovieri M (2002) Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ 300:229–243Google Scholar
  108. Martoja R, Ballan-Dufrançais C, Jeantet AY, Gouzerth P, Amiard JC, Amiard-Triquet C, Berthet B, Baud JP (1988) Effets chimiques et cytologiques de la contamination expérimentale de l’huître Crassostrea gigas Thunberg par l’argent administré sous forme dissoute et par voie alimentaire. Can J Fish Aquat Sci 44:539–550Google Scholar
  109. Merian E, Anke M, Ihnat M, Stoeppler M (2004) Elements and their compounds in the environment. Wiley-VCH, WeinheimGoogle Scholar
  110. Metian M, Charbonnier L, Oberhaënsli F, Bustamante P, Jeffree R, Amiard JC, Warnau M. (2009) Assessment of metal, metalloid, and radionuclide bioaccessibility from mussels to human consumers, using centrifugation and simulated digestion methods coupled with radiotracer techniques. Ecotoxicol Environ Saf 72:1499–1502Google Scholar
  111. Michel P (1993) L’arsenic en milieu marin. Biogéochimie et écotoxicologie. Repères Océan no. 4. Ifremer Edition, France, 62 pGoogle Scholar
  112. Michel P, Averty B (1999) Contamination of French coastal waters by organotin compounds: 1997 Update. Mar Pollut Bull 38:268–275Google Scholar
  113. Miramand P, Guary JC, Fowler SW (1980) Vanadium transfer in the mussel Mytilus galloprovincialis. Mar Biol 56:281–293Google Scholar
  114. Mourgaud Y, Martinez E, Geffard A, Andral B, Stanisiere JY, Amiard JC (2002) Metallothionein concentration in the mussel Mytilus galloprovincialis as a biomarker of response to metal contamination: validation in the field. Biomarkers 7:479–490Google Scholar
  115. Mozaffarian DMD, Rimm EB (2006) Fish intake, contaminants, and human health Evaluating the risks and benefits. JAMA 296:1885–1899Google Scholar
  116. Munoz O, Devesa V, Suner MA, Velez D, Montoro R, Urieta I, Macho ML, Jalon M (2000) Total and inorganic arsenic in fresh and processed fish products. J Agric Food Chem 48:4369–4376Google Scholar
  117. Murray AP, Richardson BJ, Gibbs CF (1991) Bioconcentration factors for petroleum hydrocarbons, PAHs, LABs and biogenic hydrocarbons in the blue mussel. Mar Pollut Bull 22:595–603Google Scholar
  118. Nakagawa R, Yumita Y, Hiromoto M (1997) Total mercury intake from fish and shellfish by Japanese people. Chemosphere 35:2909–2913Google Scholar
  119. Narbonne JF, Michel X (1997) Systèmes de biotransformation chez les mollusques aquatiques. In: Lagadic L, Caquet T, Amiard JC, Ramade F (eds) Biomarqueurs en écotoxicologie. Aspects fondamentaux. Masson, Paris, pp 11–31Google Scholar
  120. Noël L, Leblanc JC, Guérin T (2003) Determination of several elements in duplicate meals from catering establishment using closed vessel microwave digestion with inductively coupled plasma mass spectrometry detection: estimation of daily dietary intake. Food Addit Contam 20: 44–56Google Scholar
  121. Noël L, Testu C, Chafey C, Pinte J, Velge P, Guérin T (in press) Contamination levels for lead, cadmium and mercury in big crustaceans: differences between white and brown meats. J Food Compos AnalGoogle Scholar
  122. Noël L, Testu C, Chafey C, Velge P, Guérin T (2011) Contamination levels for lead, cadmium and mercury in marine gastropods, echinoderms and tunicates. Food Control 22:433–437Google Scholar
  123. OSPAR (2007) Second periodic evaluation of progress towards the objective of the OSPAR radioactive substances strategy (JAMP product RA–2)Google Scholar
  124. OSPAR (2008) The convention for the protection of the marine environment of the North-East Atlantic; 2007/2008 CEMP assessment: trends and concentration of selected hazardous substances in sediments and trends in TBT-specific biological effects. Available from
  125. O’Connor TP (1998) Mussel watch results from 1986 to 1996. Mar Pollut Bull 37:14–19Google Scholar
  126. Page DS, Dassanayake TM, Gilfillan ES (1995) Tissue distribution and depuration of tributyltin for field-exposed Mytilus edulis. Mar Environ Res 40:409–421Google Scholar
  127. Pain S, Parant M (2003) Multixenobiotic defence mechanism (MXDM) in bivalves. Comptes Rendus Biol 326:659–672Google Scholar
  128. Pilliére F, Conso F (2007) Biotox. In: INRS (ed) Guide biotoxicologique pour les médecins du travail. Paris, 252p.$FILE/fset.html
  129. Polikarpov GG (1960) Absorption of short-lived radioactivity by sea organisms. Priroda 49:105–7Google Scholar
  130. Pradel J, Zettwoog P, Dellero N, Beutier D (2001) Le polonium 210, un repère naturel important en radioprotection. Radioprotection 36:401–416Google Scholar
  131. Pruell RJ, Lake JL, Davis WR, Quinn JG (1986) Uptake and depuration of organic contaminants by blue mussels (Mytilus edulis) exposed to environmentally contaminated sediment. Mar Biol 91:497–507Google Scholar
  132. Richardson SD, Ternes TA (2005) Water analysis: emerging contaminants and current issues. Anal Chem 77: 3807–3838Google Scholar
  133. Roux N, Chiffoleau JF, Claisse D (2001) L’argent, le cobalt, le nickel et le vanadium dans les mollusques du littoral français. Surveillance du milieu marin. In: Ifremer (ed). Travaux RNO, 2001. Nantes (La Chapelle sur Erdre), pp 11–20Google Scholar
  134. Saavedra Y, Fernández P, González A (2004) Determination of vanadium in mussels by electrothermal atomic absorption spectrometry without chemical modifiers. Anal Bioanal Chem 379:72–76Google Scholar
  135. Sabbioni E, Fischbach M, Pozzi G, Pietra R, Gallorini M, Piette JL (1991) Cellular retention toxicity and carcinogenic potential of seafood arsenic. I. Lack of cytotoxicity and transforming activity of arsenobetaine in the BALB/3T3 cell line. Carcinogenesis 12:1287–1291Google Scholar
  136. Samain JF, McCombie H (2008) Summer mortality of Pacific oyster Crassostrea gigas – The MOREST projectGoogle Scholar
  137. Sanders JG, Osman RW, Riedel GF (1989) Pathways of arsenic uptake and incorporation in estuarine phytoplankton and the filter-feeding invertebrates Eurytemora affinis, Balanus improvisus and Crassostrea virginica. Mar Biol 103:319–325Google Scholar
  138. Sauvage C, Pépen JF, Lapégue S, Boudry P, Renault T (2009) Ostreid herpes virus 1 infection in families of the Pacific oyster, Crassostrea gigas, during a summer mortality outbreak: differences in viral DNA detection and quantification using real-time PCR. Virus Res 142:181–187Google Scholar
  139. Schaffner M, Bader HP, Scheidegger R (2009) Modeling the contribution of point sources and non-point sources to Thachin River water pollution. Sci Total Environ 407:4902–4915Google Scholar
  140. Schoof RA, Yager JW (2007) Variation of total and speciated arsenic in commonly consumed fish and seafood. Hum Ecol Risk Assess 13:946–965Google Scholar
  141. Schoof RA, Yost LJ, Eickhoff J, Crecelius EA, Cragin DW, Meacher DM, Menzel DB (1999) A market basket survey of inorganic arsenic in food. Food Chem Toxicol 37:839–846Google Scholar
  142. SCOOP (2004) Report on tasks 3.2.11. Assessment of the dietary exposure to arsenic, cadmium, lead and mercury of the population of the EU Members States, pp 1–125. Available at
  143. Sericano JL, Wade TL, Brooks JM (1996) Accumulation and depuration of organic contaminants by the American oyster (Crassostrea virginica). Sci Total Environ 179:149–160Google Scholar
  144. Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35:743–759Google Scholar
  145. Sirot V, Guérin T, Mauras Y, Garraud H, Volatier JL, Leblanc JC (2008) Methylmercury exposure assessment using dietary and biomarker data among frequent seafood consumers in France. Environ Res 107:30–38Google Scholar
  146. Sirot V, Guérin T, Volatier J, Leblanc JC (2009) Dietary exposure and biomarkers of arsenic in consumers of fish and shellfish from France. Sci Total Environ 407:1875–1885Google Scholar
  147. Soto M, Cajaraville MP, Marigómez I (1996) Tissue and cell distribution of copper, zinc and cadmium in the mussel, Mytilus galloprovincialis, determined by autometallography. Tissue Cell 28:557–568Google Scholar
  148. Storelli MM, Ceci E, Marcotrigiano GO (1998) Comparison of total mercury, methylmercury, and selenium in muscle tissues and in the liver of Stenella coeruleoalba (Meyen) and Caretta caretta (Linnaeus). Bull Environ Contamin Toxicol 61:541–547Google Scholar
  149. Sukasem P, Tabucanon MS (1993) Monitoring heavy metals in the Gulf of Thailand using mussel watch approach. Sci Total Environ 139–140:297–305Google Scholar
  150. SU-VI-MAX (2002) Portions alimentaires: manuel photos pour l’estimation des quantités. editor Polytechnica, ParisGoogle Scholar
  151. Tripp BW, Farrington JW, Goldberg ED, Sericano J (1992) International mussel watch: the initial implementation phase. Mar Pollut Bull 24:371–373Google Scholar
  152. Van Caneghem J, Block C, Van Brecht A, Wauters G, Vandecasteele C (2010) Mass balance for POPs in hazardous and municipal solid waste incinerators. Chemosphere 78:701–708Google Scholar
  153. Vos G, Hovens JPC, Hagel P (1986) Chromium, nickel, copper, zinc, arsenic, selenium, cadmium, mercury and lead in dutch fishery products 1977–1984. Sci Total Environ 52:25–40Google Scholar
  154. Walraven N, Laane RW (2009) Assessing the discharge of pharmaceuticals along the dutch coast of the North Sea. Rev Environ Contam Toxicol 199:1–18Google Scholar
  155. Wei C, Li W, Zhang C, Van Hulle M, Cornelis R, Zhang X (2003) Safety evaluation of organoarsenical species in edible porphyra from the China Sea. J Agric Food Chem 51:5176–5182Google Scholar
  156. Yang RQ, Zhou QF, Jiang GB. (2006) Butyltin accumulation in the marine clam Mya arenaria: An evaluation of its suitability for monitoring butyltin pollution. Chemosphere 63:1–8Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marielle Guéguen
    • 1
  • Jean-Claude Amiard
    • 2
  • Nathalie Arnich
    • 3
  • Pierre-Marie Badot
    • 4
  • Didier Claisse
    • 5
  • Thierry Guérin
    • 6
  • Jean -Paul Vernoux
    • 1
    Email author
  1. 1.Unité des microorganismes d’intérêt laitier et alimentaire EA 3213, UFR ICORE 146Université de Caen-Basse NormandieCaen Cedex 5France
  2. 2.Service d’Ecotoxicologie – “Mer, Molécules, Santé”, EA 2160Université de NantesNantesFrance
  3. 3.Direction Santé Alimentation, Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail (ANSES)Maisons-AlfortFrance
  4. 4.UMR Chrono-environnementCNRS/Université de Franche-Comté usc INRABesançon cedexFrance
  5. 5.Département Biogéochimie et Ecotoxicologie, ROCCHIFREMERNantes Cedex 3France
  6. 6.Unité Contaminants inorganiques et minéraux de l’environnement (CIME)Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail (ANSES), Laboratoire de sécurité des aliments, ANSES – LSAMaisons-Alfort CedexFrance

Personalised recommendations