Skip to main content

Pesticidal Copper (I) Oxide: Environmental Fate and Aquatic Toxicity

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 213

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 213))

Abstract

Besides being a naturally occurring element and an essential micronutrient, copper is used as a pesticide, but at generally higher concentrations. Copper, unlike organic pesticides, does not degrade, but rather enters a complex biogeochemical cycle. In the water column, copper can exist bound to both organic and inorganic species and as free or hydrated copper ions. Water column chemistry affects copper speciation and bioavailability. In all water types (saltwater, brackish water, and freshwater), organic ligands in the water column can sequester the majority of dissolved copper, and therefore, organic ligands play the largest role in copper bioavailability. In freshwater, however, the geochemistry of a particular location, including water column characteristics such as water hardness and pH, is a significant factor that can increase copper bioavailability and toxicity. In most cases, organic ligand concentrations greatly exceed copper ion concentrations in the water column and therefore provide a large buffering capacity. Hence, copper bioavailability can be grossly overestimated if it is based on total dissolved copper (TDCu) concentrations alone. Other factors that influence copper concentrations include location in the water column, season, temperature, depth, and level of dissolved oxygen. For example, concentrations of bioavailable copper may be significantly higher in the bottom waters and sediment pore waters, where organic ligands degrade much faster and dissolved copper is constantly resuspended and recycled into the aquatic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amiard-Triquet C, Berthet B, Martoja R (1991) Influence of salinity on trace metal (Cu, Zn, Ag) accumulation at the molecular, cellular and organism level in the oyster Crassostrea gigas Thunberg. Biol Met 4:144–150

    Article  CAS  Google Scholar 

  • Apte SC, Gardner MJ, Ravenscroft JE (1990) An investigation of copper complexation in the Severn estuary using differential pulse cathodic stripping voltammetry. Mar Chem 29:63–75

    Article  CAS  Google Scholar 

  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  CAS  Google Scholar 

  • Beck NG, Bruland KW, Rue EL (2002) Short-term biogeochemical influence of a diatom bloom on the nutrient and trace metal concentrations in South San Francisco Bay microcosm experiments. Estuaries 25(6A):1063–1076

    Article  CAS  Google Scholar 

  • Beck AJ, Sanudo–Wilhelmy SA (2007) Impact of water temperature and dissolved oxygen on copper cycling in an urban estuary. Environ Sci Technol 41(17):6103–6108

    Article  CAS  Google Scholar 

  • Berner RA (1980) Early diagenesis, a theoretical approach. Princeton Series in Geochemistry. Princeton University press, Princeton, NJ

    Google Scholar 

  • Bettini S, Ciani F, Franceschini V (2006) Recovery of the olfactory receptor neurons in the African Tilapia mariae following exposure to low copper level. Aquat Toxicol 76:321–328

    Article  CAS  Google Scholar 

  • Blanchard J, Grosell M (2005) Effects of salinity on copper accumulation in the common killifish (Fundulus heteroclitus. Environ Toxicol Chem 24(6):1403–1413

    Article  CAS  Google Scholar 

  • Bopp SK, Abicht HK, Knauer K (2008) Copper- induced oxidative stress in rainbow trout gill cells. Aquat Toxicol 86:197–204

    Article  CAS  Google Scholar 

  • Boudesocque S, Guillon E, Aplincourt M, Marceau E, Stievano L (2007) Sorption of Cu(II) onto vineyard soils: macroscopic and spectroscopic investigations. J Colloid Interface Sci 307:40–49

    Article  CAS  Google Scholar 

  • Boulanger B, Nikolaidis NP (2003) Mobility and aquatic toxicity of copper in an urban watershed. J Am Water Resour Assoc 39(2):325–336

    Article  CAS  Google Scholar 

  • Brand L, Sunda WG, Guillard RRL (1986) Reduction of marine phytoplankton reproduction rates by copper and cadmium. J Exp Mar Biol Ecol 96:225–250

    Article  CAS  Google Scholar 

  • Brix KV, DeForest DK (2000) Critical review of the use of bioconcentration factors for hazard classification of metals and metal compounds. Parametrix Inc., Washington, DC. Report No. 555–3690–001

    Google Scholar 

  • Brooks SJ, Bolam T, Tolhurst L, Bassett J, Roche JL, Waldock M, Barry J, Thomas KV (2007) Effects of dissolved organic carbon on the toxicity of copper to the developing embryos of the pacific oyster (Crassostrea gigas). Environ Toxicol Chem 26(8):1756–1763

    Article  CAS  Google Scholar 

  • Buck KN, Bruland KW (2005) Copper speciation in San Francisco Bay: a novel approach using multiple analytical windows. Mar Chem 96(1–2):185–198

    Article  CAS  Google Scholar 

  • Buck KN, Ross JRM, Flegal AR, Bruland KW (2007) A review of total dissolved copper and its chemical speciation in San Francisco Bay, California. Environ Res 105:5–19

    Article  CAS  Google Scholar 

  • Buckley PJM, Van Den Berg CMG (1986) Copper complexation profiles in the Atlantic Ocean. Mar Chem 19:281–296

    Article  CAS  Google Scholar 

  • Carreau ND, Pyle GG (2005) Effect of copper exposure during embryonic development on chemosensory function of juvenile fathead minnows (Pimephales promelas). Ecotoxicol Environ Saf 61:1–6

    Article  CAS  Google Scholar 

  • CDPR (1991) Cuprous Oxide, Grade AA. EPA Reg No 63005-1, section 3 registration, 50339-042. 1220 N Street, Sacramento, CA 95814, USA

    Google Scholar 

  • CDPR (2009a) (California Department of Pesticide Regulation) CDPR Database. URL:http://apps.cdpr.ca.gov/cgi-bin/label/labq.pl?p_chem=175&activeonly=on. Accessed 4 Nov 2009

  • CDPR (2009b) (PUR, Pesticide Use Reporting Database) URL: http://www.cdpr.ca.gov/docs/pur/purmain.htm. Accessed 9 Nov 2009

  • Chester R, Thomas A, Lin FJ, Basaham AS, Jacinto G (1988) The solid state speciation of copper in surface water particulates and oceanic sediments. Mar Chem 24:261–292

    Article  CAS  Google Scholar 

  • Church TM, Tramontano JM, Scudlark JR, Jickells TD, Tokos JJ Jr, Knap AH, Galloway JN (1984) The wet deposition of trace metals to the Western Atlantic Ocean at the mid-Atlantis coast and on Bermuda. Atmos Environ 18(12):2657–2664

    Article  CAS  Google Scholar 

  • Claisse D, Alzieu C (1993) Copper contamination as a result of antifouling paint regulations? Mar Pollut Bull 26(7):395–397

    Article  CAS  Google Scholar 

  • Corami F, Capodaglio G, Turetta C, Bragadin M, Calace N, Petronio BM (2007) Complexation of cadmium and copper by fluvial humic matter and effects on their toxicity. Annal Chim (Italy 97:25–37

    Article  CAS  Google Scholar 

  • Damiens G, Mouneyrac C, Quiniou F, His E, Gnassia-Barelli M, Romeo M (2006) Metal bioaccumulation and metallothionein concentrations in larvae of Crassostrea gigas. Environ Pollut 140:492–499

    Article  CAS  Google Scholar 

  • Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, Bonzongo JC (2009) Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environ Sci Technol 43(9):3322–3328

    Article  CAS  Google Scholar 

  • Georgopoulos PG, Roy A, Yonone-Lioy MJ, Opiekun RE, Lioy PJ (2001) Copper: environmental dynamics and human exposure issues. J Toxicol Environ Health, Part B 4:341–394

    Article  CAS  Google Scholar 

  • Gerringa LJA (1990) Aerobic degradation of organic matter and the mobility of Cu, Cd, Ni, Pb, Zn, Fe and Mn in the marine sediment slurries. Mar Chem 29:355–374

    Article  CAS  Google Scholar 

  • Gerringa LJA, Van Den Meer J, Cauwet G (1991) Complexation of copper and nickel in the dissolved phase of marine sediment slurries. Mar Chem 36:51–70

    Article  CAS  Google Scholar 

  • Giusti L, Yang YL, Hewitt CN, Hamilton-Taylor J, Davison W (1993) The solubility and partitioning of atmospherically derived trace metals in artificial and natural waters: a review. Atmos Environ 27A(10):1567–1578

    CAS  Google Scholar 

  • Goh KS (1987) Cuprous oxide. In: Worthing CR et al (eds) The pesticide manual: a world compendium, 8th edn. The British Crop Protection Council, UK, pp 196–197

    Google Scholar 

  • Goh BPL, Chou ML (1997) Heavy metal levels in marine sediments of Singapore. Environ Monit Assess 44:67–80

    Article  CAS  Google Scholar 

  • Griffitt RJ, Hyndman K, Denslow ND, Barber DS (2009) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107(2):404–415

    Article  CAS  Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27(9):1972–1978

    Article  CAS  Google Scholar 

  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41(23):8178–8186

    Article  CAS  Google Scholar 

  • Grosell M, Blanchard J, Brix KV, Gerdes R (2007) Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. Aquat Toxicol 84:162–172

    Article  CAS  Google Scholar 

  • Gundersen P, Steinnes E (2003) Influence of pH and TOC concentration on Cu, Zn, Cd, and Al speciation in rivers. Water Res 37:307–318

    Article  CAS  Google Scholar 

  • Hall LW Jr, Anderson RD, Lewis BL, Arnold WR (2008) The influence of salinity and dissolved organic carbon on the toxicity of copper to the estuarine copepod, Eurytemora affinis. Arch Environ Contam Toxicol 54:44–56

    Article  CAS  Google Scholar 

  • Hansen JA, Rose JD, Jenkins RA, Gerow KG, Berbmah HL (1999) Chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss) exposed to copper: neurophysiological and histological effects on the olfactory system. Environ Toxicol Chem 18:1979–1991

    CAS  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    Article  CAS  Google Scholar 

  • Helland A, Bakke T (2002) Transport and sedimentation of Cu in a microtidal estuary, SE Norway. Mar Pollut Bull 44:149–155

    Article  CAS  Google Scholar 

  • Hirose K, Dokiya Y, Sugimura Y (1982) Determination of conditional stability constants of organic copper and zinc complexes dissolved in seawater using ligand exchange method with EDTA. Mar Chem 11:343–354

    Article  CAS  Google Scholar 

  • Hoffman SR, Shafer MM, Armstrong DE (2007) Strong colloidal and dissolved organic ligands binding copper and zinc in rivers. Environ Sci Technol 41(20):6996–7002

    Article  Google Scholar 

  • HSDB (Hazardous Substances Data Bank) (2008) U.S. National Library of Medicine. URL: http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB. Accessed 8 July 2008

  • Hsiao MC, Wang HP, Wei YL, Chang J, Jou CJ (2002) Speciation of copper in the incineration fly ash of a municipal solid waste. J Hazard Mater B 91:301–307

    Article  CAS  Google Scholar 

  • Hurst MP, Bruland KW (2005) The use of nafion-coated thin mercury film electrodes for the determination of the dissolved copper speciation in estuarine water. Anal Chim Acta 546:68–78

    Article  CAS  Google Scholar 

  • ILO (International Labor Organization) (2008) International Occupational Safety and Health Information Center. ICSC: 0421-Copper(I)oxide. URL: http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc04/icsc0421.htm. Last updated 01/29/2008

  • Jacobson AR, Dousset S, Andreux F, Baveye PC (2007) Electron microprobe and synchrotron x-ray fluorescence mapping of the heterogeneous distribution of copper in high-copper vineyard soils. Environ Sci Technol 41(18):6343–6349

    Article  CAS  Google Scholar 

  • Jones B, Bolam T (2007) Copper speciation survey from UK marinas, harbors and estuaries. Mar Pollut Bull 54:1127–1138

    Article  CAS  Google Scholar 

  • Kabala C, Singh BR (2001) Fractionation and mobility of copper, lead and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual 30:485–492

    Article  CAS  Google Scholar 

  • Kahru A, Dubourguier HC, Blinova I, Ivask A, Kasemets K (2008) Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview. Sensors 8:5153–5170

    Article  CAS  Google Scholar 

  • Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles- a comparison between nano- and micrometer size. Toxicol Lett 188:112–118

    Article  CAS  Google Scholar 

  • Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23:1116–1122

    Article  CAS  Google Scholar 

  • Katranitsas A, Castritsi-Catharios J, Persoone G (2003) The effects of a copper-based antifouling paint on mortality and enzymatic activity of a non-target marine organism. Mar Pollut Bull 46:1491–1494

    Article  CAS  Google Scholar 

  • Kieber RJ, Skrabal SA, Smith C, Willey JD (2004) Redox speciation of copper in rainwater: temporal variability and atmospheric deposition. Environ Sci Technol 38(13):3587–3594

    Article  CAS  Google Scholar 

  • Klinkhammer GP (1980) Early diagenesis in sediments from the Eastern Equatorial Pacific, II. Pore water metal results. Earth Planet Sci Lett 49:81–101

    Article  CAS  Google Scholar 

  • Klinkhammer G, Heggie DT, Graham DW (1982) Metal diagenesis in oxic marine sediments. Earth Planet Sci Lett 61:211–219

    Article  CAS  Google Scholar 

  • Kozelka PB, Bruland KW (1998) Chemical speciation of dissolved Cu, Zn, Cd, Pb in Narragansett Bay, Rhode Island. Mar Chem 60:267–282

    Article  CAS  Google Scholar 

  • Kramer KJM, Jak RG, Van Hattum B, Hoftman RN, Zwolsman JJG (2004) Copper toxicity in relation to surface water-dissolved organic matter: biological effects to Daphnia magna. Environ Toxicol Chem 23(12):2971–2980

    Article  Google Scholar 

  • Landing WM, Feely RA (1981) The chemistry and vertical flux of particles in the Northeastern Gulf of Alaska. Deep Sea Res Part A 28:19–37

    Article  CAS  Google Scholar 

  • Liu SH, Wang HP (2004) In situ speciation studies of copper-humic substances in a contaminated soil during electrokinetic remediation. J Environ Qual 33:1280–1287

    Article  CAS  Google Scholar 

  • Long KWJ (2006) Copper: marine fate and effects assessment. CSI Europe. Pentlands Science Park, project number 06741. Penicuik, Midlothian EH26 0PZ, UK

    Google Scholar 

  • Lucia M, Campos AM, Van Den Berg CMG (1994) Determination of copper complexation in sea water by cathodic stripping voltammetry and ligand competition with salicylaldoxime. Anal Chim Acta 284:481–496

    Article  Google Scholar 

  • McBride MB, Bouldin DR (1984) Long-term reactions of copper (II) in a contaminated calcareous soil. Soil Sci Soc Am J 48:56–59

    Article  CAS  Google Scholar 

  • McIntyre JK, Baldwin DH, Meador JP, Scholz NL (2008) Chemosensory deprivation in juvenile Coho salmon exposed to dissolved copper under varying water chemistry conditions. Environ Sci Technol 42(4):1352–1358

    Article  CAS  Google Scholar 

  • Midander K, Cronholm P, Karlsson HL, Elihn K, Möller L, Leygraf C, Wallinder IO (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small 5(3):389–399

    Article  CAS  Google Scholar 

  • Moffett JW, Zilka RG (1983) Oxidation kinetics of Cu (I) in seawater: implications for its existence in the marine environment. Mar Chem 13:239–251

    Article  CAS  Google Scholar 

  • Mortimer M, Kasemets K, Kahru A (2010) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269:182–189

    Article  CAS  Google Scholar 

  • Muller FLL (1996) Interactions of copper, lead and cadmium with the dissolved, colloidal and particulate components of estuarine and coastal waters. Mar Chem 52:245–268

    Article  CAS  Google Scholar 

  • Pesavento M, Biesuz R, Profumo A, Soldi T (2003) Investigation of the complexation of metal-ions by strong ligands in fresh and marine water. Environ Sci Pollut Res 10(5):317–320

    CAS  Google Scholar 

  • Ponizovsky AA, Allen HE, Ackerman AJ (2007) Copper activity in soil solutions of calcareous soils. Environ Pollut 145:1–6

    Article  CAS  Google Scholar 

  • Rodriguez-Rubio P, Morillo E, Madrid L, Undabeytia T, Maqueda C (2003) Retention of copper by a calcareous soil and its textural fractions: influence of amendment with two agroindustrial residues. Eur J Soil Sci 54:401–409

    Article  CAS  Google Scholar 

  • RWQCB (Regional Water Quality Control Board) (2007) Santa Ana. California Environmental Protection Agency. (2007) Lower Newport Bay Copper/Metals Marina Study. Final report. URL: http://www.swrcb.ca.gov/rwqcb8/water_issues/programs/tmdl/docs/newport/finalcufinal_report.pdf. Accessed 22 Feb 2010

  • Sandahl JF, Baldwin DH, Jenkins JJ, Scholz NL (2007) A sensory system at the interface between urban stormwater runoff and salmon survival. Environ Sci Technol 41:2998–3004

    Article  CAS  Google Scholar 

  • Schiff K, Brown J, Diehl D, Greenstein D (2007) Extent and magnitude of copper contamination in marinas of the San Diego region, California, USA. Mar Pollut Bull 54:322–328

    Article  CAS  Google Scholar 

  • Shank GC, Skrabal SA, Whitehead RF, Kieber RJ (2004) Strong copper complexation in an organic-rich estuary: the importance of allochthonous dissolved organic matter. Mar Chem 88:21–39

    Article  CAS  Google Scholar 

  • Singhasemanon N, Pyatt E, Bacey J (2009) Monitoring for indicators of antifouling paint pollution in California marinas. California Environmental Protection Agency, Department of Pesticide Regulation, Environmental Monitoring Branch, EH08-05. URL: http://www.cdpr.ca.gov/docs/emon/pubs/ehapreps/eh0805.pdf. Accessed 22 Feb 2010

  • Skrabal SA, Donat JR, Burdige DJ (2000) Pore water distribution of dissolved copper and copper-complexing ligands in estuarine and coastal marine sediments. Geochim Cosmochim Acta 64(11):1843–1857

    Article  CAS  Google Scholar 

  • Snoeyink VL, Jenkins D (1980a) Alkalinity and acidity. In: Water chemistry. Wiley, New York, NY, p 173

    Google Scholar 

  • Snoeyink VL, Jenkins D (1980b) Complexes with other inorganic ligands. In: Water chemistry. Wiley, New York, NY, p 221

    Google Scholar 

  • Strawn DG, Baker LL (2008) Speciation of Cu in a contaminated agricultural soil measured by XAFS, μ-XAFS and μ-XRF. Environ Sci Technol 42(1):37–42

    Article  CAS  Google Scholar 

  • Suda WG, Hanson AK (1987) Measurement of free cupric ion concentration in seawater by a ligand competition technique involving copper sorption onto C18 SEP-PAK cartridges. Limnol Oceanogr 32(3):537–511

    Google Scholar 

  • Temminghoff EJM, Van Den Zee SE, De Haan FAM (1997) Copper mobility in a copper-contaminated sandy soil a affected by pH and solid and dissolved organic matter. Environ Sci Technol 31(4):1109–1115

    Article  CAS  Google Scholar 

  • Tilton F, Tilton SC, Bammler TK, Beyer R, Farin F, Stapleton PL, Gallagher EP (2008) Transcription biomarkers and mechanisms of copper-induced olfactory injury in zebrafish. Environ Sci Technol 42(24):9404–9411

    Article  CAS  Google Scholar 

  • U.S. DHHS (Department of Health and Human Services) (2004) Agency for Toxic Substances and Disease Registry (ATSDR) toxicological profile for copper. URL: http://www.atsdr.cdc.gov/toxprofiles/tp132.pdf. Last updated 10/01/2007

  • U.S. EPA (2007) Office of the science advisor, Nanotechnology white paper. Washington, DC. URL: http://www.epa.gov/osa/nanotech.htm. Last updated 11/04/2009

  • U.S. EPA (2009a) ECOTOX database. URL: http://cfpub.epa.gov/ecotox/. Accessed 5 Nov 2009

  • U.S. EPA (2009b) Water quality standards. URL: http://www.epa.gov/waterscience/standards/rules/ctr/. Last updated 03/26/2009

  • U.S. EPA (Environmental Protection Agency) (2000) Water quality standards; establishment of numeric criteria for priority toxic pollutants for the state of California. 40 CFR part 131 (2000). URL: http://www.epa.gov/fedrgstr/EPA-WATER/2000/May/Day-18/w11106. pdf. Accessed 18 Nov 2009

  • Van Den Berg CMG (1984) Organic and inorganic speciation of copper in the Irish Sea. Mar Chem 14:201–212

    Article  Google Scholar 

  • Van Den Berg CMG, Donat JR (1992) Determination and data evaluation of copper complexation by organic ligands in sea water using cathodic stripping voltammetry at varying detection windows. Anal Chim Acta 257:281–291

    Article  Google Scholar 

  • Viarengo A, Pertica M, Mancinelli G, Burlando B, Canesi L, Orunesu M (1996) In vivo effects of copper on calcium homeostasis mechanisms of mussel gill cell plasma membranes. Comp Biochem Physiol Part C 113(3):421–425

    Google Scholar 

  • Wang R, Chakrabarti CL (2008) Copper speciation by competing ligand exchange method using differential pulse anodic stripping voltammetry with ethylenediaminetetraacetic acid (EDTA) as competing ligand. Anal Chim Acta 614:153–160

    Article  CAS  Google Scholar 

  • Web Elements (2009) The periodic table on the web. URL: http://www.webelements.com/compounds/copper/dicopper_oxide.html. Accessed 4 Nov 2009

  • Weser U, Schubotz LM, Younes M (1979) Chemistry of copper proteins and enzymes. Nriagu JO (ed) Copper in the environment. Part. II: health effects. Wiley, Toronto, ON, pp 197–240

    Google Scholar 

  • Widerlund A (1996) Early diagenetic remobilization of copper in near-shore marine sediments: a quantitative pore-water model. Mar Chem 54:41–53

    Article  CAS  Google Scholar 

  • Wilde KL, Stauber JL, Markich SJ, Franklin NM, Brown PL (2006) The effects of pH on the uptake and toxicity of copper and zinc in a tropical freshwater alga (Chlorella sp). Arch Environ Contam Toxicol 51:174–185

    Article  CAS  Google Scholar 

  • Williams MR, Millward GE, Nimmo M, Fones G (1998) Fluxes of Cu, Pb and Mn to the North-Eastern Irish Sea: the importance of sedimental and atmospheric inputs. Mar Pollut Bull 36(5):366–375

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A special thanks to K. Goh and D. Oros from the Environmental Monitoring Branch of the California Environmental Protection Agency, Department of Pesticide Regulation, for their help in preparing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Singhasemanon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kiaune, L., Singhasemanon, N. (2011). Pesticidal Copper (I) Oxide: Environmental Fate and Aquatic Toxicity. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 213. Reviews of Environmental Contamination and Toxicology, vol 213. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9860-6_1

Download citation

Publish with us

Policies and ethics