A Benchmark Test Structure for Experimental Dynamic Substructuring

  • P. L. C. van der Valk
  • J. B. van Wuijckhuijse
  • D. de Klerk
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


In this paper a benchmark test structure for experimental dynamic substructuring is presented. The benchmark is a simple structure designed to gain insight into difficulties experienced in experimental dynamic substructuring (DS). First a brief introduction of dynamic substructuring is presented, followed by a summary of current bottlenecks in experimental DS. From these difficulties a set of requirements for the benchmark is formulated. Thereafter the design is presented and its numerical model is validated by a measurement on the fabricated benchmark. Finally a DS analysis is performed on the benchmark structure to show it’s ability to quickly verify or falsify a DS analysis.


Experimental Mechanics AIAA Journal Modal Assurance Criterion Rigid Body Mode Component Mode Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Craig, R. Coupling of Substructures for Dynamic Analyses – An Overview. In Proceedings of AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit (April 2000), pp. 1573–1584.Google Scholar
  2. 2.
    Craig, R., and Bampton, M. Coupling of Substructures for Dynamic Analysis. AIAA Journal 6, 7 (1968), 1313–1319.MATHCrossRefGoogle Scholar
  3. 3.
    Crowley, J. R., Klosterman, A. L., Rocklin, G. T., and Vold, H. Direct structural modification using frequency response functions. In 2nd International Modal Analysis Conference, Orlando (1984).Google Scholar
  4. 4.
    de Klerk, D. Dynamic Response Characterization of Complex Systems through Operational Identification and Dynamic Substructuring. PhD thesis, Delft University of Technology, Delft, the Netherlands, October 2008.Google Scholar
  5. 5.
    de Klerk, D., Rixen, D., and Voormeeren, S. General Framework for Dynamic Substructuring: History, Review and Classification of Techniques. AIAA Journal 46, 5 (May 2008), 1169–1181.Google Scholar
  6. 6.
    de Klerk, D., Rixen, D., Voormeeren, S., and Pasteuning, F. Solving the RDoF Problem in Experimental Dynamic Substructuring. In Proceedings of the Twenty Sixth International Modal Analysis Conference, Orlando, FL (Bethel, CT, February 2008), Society for Experimental Mechanics. Paper no. 129.Google Scholar
  7. 7.
    de Klerk, D., and Voormeeren, S. Uncertainty Propagation in Experimental Dynamic Substructuring. In Proceedings of the Twenty Sixth International Modal Analysis Conference, Orlando, FL (Bethel, CT, February 2008), Society for Experimental Mechanics. Paper no. 133.Google Scholar
  8. 8.
    Guyan, R. Reduction of Stiffness and Mass Matrices. AIAA Journal 3 (February 1965), 380.CrossRefGoogle Scholar
  9. 9.
    Jetmundsen, B., Bielawa, R., and Flannelly, W. Generalized frequency domain substructure synthesis. Journal of the American Helicopter Society 33 (January 1988), 55–65.CrossRefGoogle Scholar
  10. 10.
    Liu, W., and Ewins, D. Substructure synthesis via elastic media. Journal of Sound and Vibration 361–379 (2002), 8.Google Scholar
  11. 11.
    Morgan, J. A., Pierre, C., and Hulbert, G. M. Forced Response of Coupled Substructures Using Experimentally Based Component Mode Synthesis. AIAA Journal 35 (1997), 334–339.CrossRefGoogle Scholar
  12. 12.
    Muhs, D., and Wittel, H. Roloff/Matek Machine onderdelen. Academic service, 2005. ISBN: 90 395 23215.Google Scholar
  13. 13.
    Rixen, D. J. A dual Craig-Bampton method for dynamic substructuring. Journal of Computational and Applied Mathematics 168 (2004), 383–391.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    van Beek, A. Machine Lifetime Performance & Reliability. Delft University of Technology, 2004. ISBN: 9037002080.Google Scholar
  15. 15.
    van den Boom, I. R. Leidraad verbindingen. TU Delft, 2007.Google Scholar
  16. 16.
    Voormeeren, S. Coupling procedure improvement & uncertainty quantification in experimental dynamic substructuring. Master’s thesis, TU Delft, 2007.Google Scholar

Copyright information

© Springer Science+Businees Media, LLC 2011

Authors and Affiliations

  • P. L. C. van der Valk
    • 1
  • J. B. van Wuijckhuijse
    • 1
  • D. de Klerk
    • 1
  1. 1.Department of Precision and Microsystem Engineering, section Engineering DynamicsDelft University of Technology, Faculty of Mechanical, Maritime and Materials EngineeringDelftThe Netherlands

Personalised recommendations