Skip to main content

Error quantification in calibration of AFM probes due to non-uniform cantilevers

  • Conference paper
  • First Online:
Structural Dynamics, Volume 3

Abstract

For more than two decades, the Atomic Force Microscope (AFM) has provided valuable insights in nanoscale phenomena, and it is now widely employed by scientists from various disciplines. AFMs use a cantilever beam with a sharp tip to scan the surface of a sample both to image it and to perform mechanical testing. The AFM measures the deflection of the probe beam so one must first find the spring constant of the cantilever in order to estimate the force between the sample and the probe tip. Commonly applied calibration methods regard the probe as a uniform cantilever, neglecting the tip mass and any nonuniformity in the thickness along the length of the beam. This work explores these issues, recognizing that dynamic calibration boils down to finding the modal parameters of a dynamic model for a cantilever from experimental measurements and then using those parameters to estimate the static stiffness of a probe; if the modes of the cantilever are not what was expected, for example because the non-uniformity was neglected, then the calibration will be in error. This work explores the influence of variation in the thickness of a cantilever probe along its length on its static stiffness as well as its dynamics, seeking to determine when the uniform beam model that is traditionally employed is not valid and how one can ascertain whether the model is valid from measurable quantities. The results show that the Sader method is quite robust to non-uniformity so long as only the first dynamic mode is used in the calibration. The thermal method gives significant errors for the non-uniform probe studied here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig, C. F. Quate, and C. Gerber. Atomic force microscope. Physical Review Letters, 56:930– 933, 1986.

    Article  Google Scholar 

  2. L. Gross, F. Mohn, N. Moll, P. Liljeroth, and G. Meyer. The chemical structure of a molecule resolved by atomic force microscopy. Science, 325:1110–1114, 2009.

    Article  Google Scholar 

  3. Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez, and S. Morita. Complex patterning by vertical interchange atom manipulation using atomic force microscopy. Science, 322:413–417, 2008.

    Article  Google Scholar 

  4. A. Touhami, M. H. Jericho, and T. J. Beveridge. Atomic force microscopy of cell growth and division in staphylococcus aureus. Journal of Bacteriology, 186:3286–3295, 2004.

    Article  Google Scholar 

  5. Y. F. Dufrene. Towards nanomicrobiology using atomic force microscopy. Nature Review Microbiology, 6:674–680, 2008.

    Article  Google Scholar 

  6. S. Cross, Y. S. Jin, and J. Rao andf J. K. Gimzewski. Nanomechanical analysis of cells from cancer patients. Nature Nanotechnology, 2:780–783, 2007.

    Google Scholar 

  7. J. E. Sader and L. White. Theoretical analysis of the static deflection of plates for atomic force microscope applications. Journal of Applied Physics, 74:1–5, 1993.

    Article  Google Scholar 

  8. J. E. Sader, I. Larson, P. Mulvaney, and L. White. Method for the calibration of atomic force microscope cantilevers. Review of Scientific Instruments, 66:3789–3798, 1995.

    Article  Google Scholar 

  9. M. S. Allen, H. Sumali, and P. C. Penegor. Experimental/analytical evaluation of the effect of tip mass on atomic force microscope calibration. Journal of Dynamic Systems, Measurement, and Control, Accepted, April 2009, DOI: 10.1115/1.4000160.

  10. J. L. Hutter and J. Bechhoefer. Calibration of atomic force microscope tips. Review of Scientific Instruments, 64:1868–1873, 1993.

    Article  Google Scholar 

  11. N. A. Burnham, X. Chen, C. S. Hodges, G. A. Matei, E. J. Thoreson, C. J Roberts, M. C. Davies, and S. J. B. Tendler. Comparison of calibration methods for atomic force microscopy cantilevers. Nanotechnology, 14:1–6, 2003.

    Google Scholar 

  12. S. M. Cook, T. E. Schaeffer, K. M. Chynoweth, M. Wigton, R. W. Simmonds, and K. M. Lang. Practical implementation of dynamic methods for measuring atomic force microscpoe cantilever spring constants. Nanotechnology, 17:2135–2145, 2006.

    Article  Google Scholar 

  13. J. H. Ginsberg. Mechanical and Structural Vibrations: Theory and Applications. John Wiley & Sons, 2001.

    Google Scholar 

  14. J. E. Sader, J. W. M. Chon, and P. Mulvaney. Calibration of rectangular atomic force microscope cantilevers. Review of Scientific Instruments, 70:3967–3969, 1999.

    Article  Google Scholar 

  15. M. K. Ghatkesara, E. Rakhmatullinab, H. P. Langa, C. Gerbera, M. Hegnera, and T. Brauna. Multiparameter microcantilever sensor for comprehensive characterization of newtonian fluids. Sensors and Actuators B: Chemical, 135:133–138, 2008.

    Article  Google Scholar 

  16. J. E. Sader. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics, 84:64–76, 1998.

    Article  Google Scholar 

  17. M. S. Allen, H. Sumali, and P.C. Penegor. Effect of tip mass on atomic force microscope calibration by thermal method. In 27th International Modal Analysis Conference, Orlando, Florida, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Frentrup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Businees Media, LLC

About this paper

Cite this paper

Frentrup, H., Allen, M.S. (2011). Error quantification in calibration of AFM probes due to non-uniform cantilevers. In: Proulx, T. (eds) Structural Dynamics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9834-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9834-7_40

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9833-0

  • Online ISBN: 978-1-4419-9834-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics